Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems
An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optim...
Uložené v:
| Vydané v: | 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) s. 242 - 249 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.04.2011
|
| Predmet: | |
| ISBN: | 1424498872, 9781424498871 |
| ISSN: | 2325-1824 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optimal controller with convergence analysis. Three neural networks are used as parametric structures to facilitate the implementation of the iterative algorithm, which will approximate at each iteration the cost function, the optimal control law, and the unknown nonlinear system, respectively. Two simulation examples are provided to verify the effectiveness of the presented optimal control approach. |
|---|---|
| ISBN: | 1424498872 9781424498871 |
| ISSN: | 2325-1824 |
| DOI: | 10.1109/ADPRL.2011.5967357 |

