Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems

An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) S. 242 - 249
Hauptverfasser: Derong Liu, Ding Wang, Dongbin Zhao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2011
Schlagworte:
ISBN:1424498872, 9781424498871
ISSN:2325-1824
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optimal controller with convergence analysis. Three neural networks are used as parametric structures to facilitate the implementation of the iterative algorithm, which will approximate at each iteration the cost function, the optimal control law, and the unknown nonlinear system, respectively. Two simulation examples are provided to verify the effectiveness of the presented optimal control approach.
ISBN:1424498872
9781424498871
ISSN:2325-1824
DOI:10.1109/ADPRL.2011.5967357