Distance and similarity measures of dual hesitant fuzzy sets with their applications to multiple attribute decision making

The Dual Hesitant Fuzzy Sets (DHFSs) is a useful tool to deal with vagueness and ambiguity in the multiple attribute decision making (MADM) problems. The distance and similarity measures analysis are important research topics. In this paper, we propose a variety of distance measures for dual hesitan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 IEEE International Conference on Progress in Informatics and Computing s. 88 - 92
Hlavní autoři: Lei Wang, Shiming Xu, Qiming Wang, Mingfang Ni
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2014
Témata:
ISBN:9781479920334, 1479920339
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Dual Hesitant Fuzzy Sets (DHFSs) is a useful tool to deal with vagueness and ambiguity in the multiple attribute decision making (MADM) problems. The distance and similarity measures analysis are important research topics. In this paper, we propose a variety of distance measures for dual hesitant fuzzy sets, based on which the corresponding similarity measures can be obtained. We investigate the connections of the aforementioned distance measures and further develop a number of dual hesitant ordered weighted distance measures. Finally, we present a TOPSIS approach based on proposed distance measures for the weapon selection problem.
ISBN:9781479920334
1479920339
DOI:10.1109/PIC.2014.6972302