Computation of maximum hands-off control
Maximum hands-off control is a control that has the minimum L 0 norm among all feasible controls. So far, we have proved that the maximum hands-off control is equivalent to the L 1 -optimal control under the normality assumption and is in general equivalent to the L p -optimal control with 0 <; p...
Uloženo v:
| Vydáno v: | 2016 SICE International Symposium on Control Systems (ISCS) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
The Society of Instrument and Control Engineers - SICE
01.03.2016
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Maximum hands-off control is a control that has the minimum L 0 norm among all feasible controls. So far, we have proved that the maximum hands-off control is equivalent to the L 1 -optimal control under the normality assumption and is in general equivalent to the L p -optimal control with 0 <; p <; 1. In this paper, by utilizing these results we give a numerical optimization method for the maximum hands-off control. We adopt a time discretization approach. As the complexity of the approximated problem then grows exponentially, we instead solve the equivalent L 1 or L p -optimization. Under the normality assumption we apply the alternating direction method of multipliers (ADMM) for the maximum hands-off control, and otherwise we apply the successive linearization algorithm (SLA). |
|---|---|
| DOI: | 10.1109/SICEISCS.2016.7470166 |