Iterative Hard Thresholding and L0 Regularisation

Sparse signal approximations are approximations that use only a small number of elementary waveforms to describe a signal. In this paper we proof the convergence of an iterative hard thresholding algorithm and show, that the fixed points of that algorithm are local minima of the sparse approximation...

Full description

Saved in:
Bibliographic Details
Published in:2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07 Vol. 3; pp. III-877 - III-880
Main Authors: Blumensath, T., Yaghoobi, M., Davies, M.E.
Format: Conference Proceeding
Language:English
Published: IEEE 01.04.2007
Subjects:
ISBN:9781424407279, 1424407273
ISSN:1520-6149
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sparse signal approximations are approximations that use only a small number of elementary waveforms to describe a signal. In this paper we proof the convergence of an iterative hard thresholding algorithm and show, that the fixed points of that algorithm are local minima of the sparse approximation cost function, which measures both, the reconstruction error and the number of elements in the representation. Simulation results suggest that the algorithm is comparable in performance to a commonly used alternative method.
ISBN:9781424407279
1424407273
ISSN:1520-6149
DOI:10.1109/ICASSP.2007.366820