Iterative Hard Thresholding and L0 Regularisation

Sparse signal approximations are approximations that use only a small number of elementary waveforms to describe a signal. In this paper we proof the convergence of an iterative hard thresholding algorithm and show, that the fixed points of that algorithm are local minima of the sparse approximation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07 Jg. 3; S. III-877 - III-880
Hauptverfasser: Blumensath, T., Yaghoobi, M., Davies, M.E.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2007
Schlagworte:
ISBN:9781424407279, 1424407273
ISSN:1520-6149
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse signal approximations are approximations that use only a small number of elementary waveforms to describe a signal. In this paper we proof the convergence of an iterative hard thresholding algorithm and show, that the fixed points of that algorithm are local minima of the sparse approximation cost function, which measures both, the reconstruction error and the number of elements in the representation. Simulation results suggest that the algorithm is comparable in performance to a commonly used alternative method.
ISBN:9781424407279
1424407273
ISSN:1520-6149
DOI:10.1109/ICASSP.2007.366820