Neuropathic Pain Scale Based Clustering for Subgroup Analysis in Pain Medicine

Neuropathic pain (NeuP) is often more difficult to treat than other types of chronic pain. The ability to predict outcomes in NeuP, such as response to specific therapies and return to work, would have tremendous value to both patients and society. In this work, we propose an adaptive clustering alg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 International Conference on Machine Learning and Applications s. 299 - 304
Hlavní autoři: Guangzhi Qu, Hui Wu, Sethi, I, Hartrick, C T
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2010
Témata:
ISBN:1424492114, 9781424492114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Neuropathic pain (NeuP) is often more difficult to treat than other types of chronic pain. The ability to predict outcomes in NeuP, such as response to specific therapies and return to work, would have tremendous value to both patients and society. In this work, we propose an adaptive clustering algorithm using the Neuropathic Pain Scale (NPS) to develop a set of standard patient templates. These templates may be useful in studying treatment response in NeuP. The approach is evaluated on 108 subjects' baseline data and results demonstrate the efficacy of utilizing neuropathic pain scale (NPS) metrics and our proposed method.
ISBN:1424492114
9781424492114
DOI:10.1109/ICMLA.2010.51