Non-dominated Sorting Evolution Strategy-based K-means clustering algorithm for accent classification
In this paper, a new method is proposed based on the side information and non-dominated sorting evolution strategy (NSES)-based K-means clustering algorithm. In a distance metric learning approach, data points are transformed to a new space where the Euclidean distances between similar and dissimila...
Uložené v:
| Vydané v: | 2008 19th International Conference on Pattern Recognition s. 1 - 4 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2008
|
| Predmet: | |
| ISBN: | 9781424421749, 1424421748 |
| ISSN: | 1051-4651 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a new method is proposed based on the side information and non-dominated sorting evolution strategy (NSES)-based K-means clustering algorithm. In a distance metric learning approach, data points are transformed to a new space where the Euclidean distances between similar and dissimilar points are at their minimum and maximum, respectively. However, the NSES-based K-means clustering yields globally optimized Gaussian components for an accent classification system. This hybrid clustering and classification approach enhances the performance of natural language call-routing systems. Accent classification performs the task of acoustic model switching based on the confidence measure for the callerpsilas query. |
|---|---|
| ISBN: | 9781424421749 1424421748 |
| ISSN: | 1051-4651 |
| DOI: | 10.1109/ICPR.2008.4761644 |

