An efficient batch expensive multi-objective evolutionary algorithm based on Decomposition

This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Congress on Evolutionary Computation (CEC) S. 1343 - 1349
Hauptverfasser: Xi Lin, Qingfu Zhang, Sam Kwong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultaneously. MOBO/D builds Gaussian process model for each objective to learn the optimization surface, and defines utility function for each subproblem to guide the searching process. At each generation, MOEA/D algorithm is called to locate a set of candidate solutions which maximize all utility functions respectively, and a subset of those candidate solutions is selected for parallel batch evaluation. Experimental study on different test instances validates that MOBO/D can efficiently solve expensive multi-objective problems in parallel. The performance of MOBO/D is also better than several classical expensive optimization methods.
AbstractList This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based on Decomposition (MOBO/D). In this algorithm, a multi-objective problem is decomposed into several subproblems which will be solved simultaneously. MOBO/D builds Gaussian process model for each objective to learn the optimization surface, and defines utility function for each subproblem to guide the searching process. At each generation, MOEA/D algorithm is called to locate a set of candidate solutions which maximize all utility functions respectively, and a subset of those candidate solutions is selected for parallel batch evaluation. Experimental study on different test instances validates that MOBO/D can efficiently solve expensive multi-objective problems in parallel. The performance of MOBO/D is also better than several classical expensive optimization methods.
Author Qingfu Zhang
Xi Lin
Sam Kwong
Author_xml – sequence: 1
  surname: Xi Lin
  fullname: Xi Lin
  email: xi.lin@my.cityu.edu.hk
  organization: Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  surname: Qingfu Zhang
  fullname: Qingfu Zhang
  email: gingfu.zhang@cityu.edu.hk
  organization: Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  surname: Sam Kwong
  fullname: Sam Kwong
  email: cssamk@cityu.edu.hk
  organization: Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China
BookMark eNotT81OwzAYCxIc2OCOxCUv0PIlTZrlOJXxI03ishOXKUm_sKA2qdpsgrenEzvZlmzLXpDrmCIS8sCgZAz0U7NpSg5MlUrXWtRwRRZMgoaZMnZLPteRovfBBYyZWpPdgeLPgHEKJ6T9scuhSPYbXT5rPKXumEOKZvylpvtKY8iHfo5N2NIU6TO61A9pCmfPHbnxppvw_oJLsnvZ7Jq3Yvvx-t6st0XQkAvhxcpz5EIoLbjVlZEaDWfeoqx8LbmyVa3ACel4K5FL5ThgK9gKnNfMVkvy-F8bEHE_jKGfx-0vb6s_Io9Psw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2017.7969460
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509046011
9781509046010
EndPage 1349
ExternalDocumentID 7969460
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-4f48f2e2447942b93a59ea21fbe53f6527b3670c45c2d5e257c20ed4180cf91b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:04 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4f48f2e2447942b93a59ea21fbe53f6527b3670c45c2d5e257c20ed4180cf91b3
PageCount 7
ParticipantIDs ieee_primary_7969460
PublicationCentury 2000
PublicationDate 2017-June
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationTitle 2017 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6460514
Snippet This paper proposes a novel surrogate-model-based multi-objective evolutionary algorithm, which is called Multi-objective Bayesian Optimization Algorithm based...
SourceID ieee
SourceType Publisher
StartPage 1343
SubjectTerms Algorithm design and analysis
Bayes methods
Computational modeling
Gaussian processes
Kernel
Lead
Optimization
Title An efficient batch expensive multi-objective evolutionary algorithm based on Decomposition
URI https://ieeexplore.ieee.org/document/7969460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECW18eBJTWv8DgeP0i4suyxHU208mKaHxjReGj4GW6O7prZN_PcCu9aYePFGCIRkgBkG3nsgdAXMUW4oJc6fRQlPhfeDVnJCi0BcTgWYSKR9fBCjUTGdynELXW-5MAAQwWfQC8X4lm8rsw5XZX0hc8lzn6DvCJHXXK3vl8dE9gd3gwDVEr2m2a__UmK4GO7_b6AD1P3h3eHxNqIcohaUHfR0U2KIQg--D9bedc5x0OWPwHMcAYGk0i-148KwadaSWn5i9fpc-eR__oZDsLK4KvEtBBB5g9TqosnwbjK4J82PCGQhkxXhjheOgY_IfhcxLVOVSVCMOg1Z6vKMCR302AzPDLMZ-N1oWAKWe8MbJ6lOj1C7rEo4RjizShnLuNLO-gwkV7QwIqEuyIsl0uoT1Almmb3XmhezxiKnf1efob1g-RpCdY7aq-UaLtCu2awWH8vLOFFf-muX7w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnpSacW3OXh02002-8hRakvFWnooUryUPCa2oruytgX_vUm6VgQv3pawITDJzOxsvu8bhK6AGsIUIYGx36IBi1IbBzVnAckccTlKQXki7eMgHQ6zyYSPauh6w4UBAA8-g5Z79Hf5ulBL96usnfKEs8QW6Fuuc1bF1vq-ewx5u9PtOLBW2qpe_NUxxSeM3t7_ltpHzR_mHR5tcsoBqkHeQE83OQYv9WDnYGmD5ww7ZX4PPcceEhgU8mUdujCsqtMkyk8sXp8LW_7P3rBLVxoXOb4FByOvsFpNNO51x51-UPVECOY8XATMsMxQsDnZ-hGVPBIxB0GJkRBHJolpKp0im2KxojoG64-KhqCZNb0ynMjoENXzIocjhGMthNKUCWm0rUESQTKVhsQ4gbGQa3mMGs4s0_e16sW0ssjJ38OXaKc_fhhMB3fD-1O063ZhDag6Q_VFuYRztK1Wi_lHeeE37QsQUJs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=An+efficient+batch+expensive+multi-objective+evolutionary+algorithm+based+on+Decomposition&rft.au=Xi+Lin&rft.au=Qingfu+Zhang&rft.au=Sam+Kwong&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=1343&rft.epage=1349&rft_id=info:doi/10.1109%2FCEC.2017.7969460&rft.externalDocID=7969460