Intrusion detection based on the semi-supervised Fuzzy C-Means clustering algorithm
The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when the algorithm used. Meanwhile the intrusion detection algorithm based on the unsupervised learning has a high False Positive Rate. In this pape...
Uloženo v:
| Vydáno v: | 2012 2nd International Conference on Consumer Electronics, Communications and Networks s. 2667 - 2670 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2012
|
| Témata: | |
| ISBN: | 9781457714146, 1457714140 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when the algorithm used. Meanwhile the intrusion detection algorithm based on the unsupervised learning has a high False Positive Rate. In this paper a semi-supervised learning algorithm for intrusion detection is proposed combined with the Fuzzy C-Means algorithm. The sensitivity to the initial values and the probability of trapping in local optimum are greatly reduced by using few labeled data to improve the learning ability of the FCM algorithm. The KDD CUP99 data set is adopted as the experimental subject. The result proves that the attack behaviors can be more efficiently found from the network data by the semi-supervised FCM clustering algorithm. |
|---|---|
| AbstractList | The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when the algorithm used. Meanwhile the intrusion detection algorithm based on the unsupervised learning has a high False Positive Rate. In this paper a semi-supervised learning algorithm for intrusion detection is proposed combined with the Fuzzy C-Means algorithm. The sensitivity to the initial values and the probability of trapping in local optimum are greatly reduced by using few labeled data to improve the learning ability of the FCM algorithm. The KDD CUP99 data set is adopted as the experimental subject. The result proves that the attack behaviors can be more efficiently found from the network data by the semi-supervised FCM clustering algorithm. |
| Author | Zou Xinguo Wu Jian Feng Guorui |
| Author_xml | – sequence: 1 surname: Feng Guorui fullname: Feng Guorui email: fgr1015@yahoo.cn organization: Dept. of Inf. Sci. & Technol., Shandong Univ. of Political Sci. & Law, Jinan, China – sequence: 2 surname: Zou Xinguo fullname: Zou Xinguo organization: Dept. of Inf. Sci. & Technol., Shandong Univ. of Political Sci. & Law, Jinan, China – sequence: 3 surname: Wu Jian fullname: Wu Jian organization: Dept. of Inf. Sci. & Technol., Shandong Univ. of Political Sci. & Law, Jinan, China |
| BookMark | eNpVUMtOwzAQNAIkoOQLevEPJKxjx7GPKGpppQIHeq-cZN0a5VHFDlL79aSiF-YwL2n3ME_krus7JGTOIGEM9EuxKD4wJCmwNJETC81vSKRzxUSW50wwrm__ZSEfSOT9N0zIIVVCP5KvdReG0bu-ozUGrMLFlcZjTScTDkg9ti724xGHH3epl-P5fKJF_I6m87RqRh9wcN2emmbfDy4c2mdyb03jMbrqjGyXi22xijefb-vidRM7DSEWNVcqK7Xk0oIyDCqRGoWlQURAyaFMrWG5Qm4UgK1tKTPgFkppwNQIfEbmf2_ddLE7Dq41w2l3XYL_AlDYVXM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CECNet.2012.6201493 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781457714139 9781457714153 1457714132 1457714159 |
| EndPage | 2670 |
| ExternalDocumentID | 6201493 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-4d3885b9636f08a10c42a8ebaeee0e630b2fa178e3a800fdfb6503f0b6a0ade03 |
| IEDL.DBID | RIE |
| ISBN | 9781457714146 1457714140 |
| IngestDate | Wed Aug 27 03:51:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-4d3885b9636f08a10c42a8ebaeee0e630b2fa178e3a800fdfb6503f0b6a0ade03 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6201493 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-April |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-April |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 2nd International Conference on Consumer Electronics, Communications and Networks |
| PublicationTitleAbbrev | CECNet |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000702849 |
| Score | 1.4861786 |
| Snippet | The intrusion detection algorithm based on the supervised learning has a high detection rate, but all the labeled data which hard to collect are needed when... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2667 |
| SubjectTerms | Algorithm design and analysis Charge carrier processes Clustering algorithms Decision support systems FCM Hafnium compounds Intrusion detection KDD CUP 99 semi-supervised Zirconium |
| Title | Intrusion detection based on the semi-supervised Fuzzy C-Means clustering algorithm |
| URI | https://ieeexplore.ieee.org/document/6201493 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2QePCkBozf6cGjhW532bZnAtGDhEQO3Ei3neomsBBYTOTXO11WjIkXb20PTfP6Ma_tvBlCHhKLnF9axcB5YImIDMt0TzBujRbeGK1UViWbkKORmk71uEEeD1oYAKicz6ATitVfvlvabXgq66YiEPr4iBxJKfdarcN7Ci5dPGl1pd3qSRkleHP4DulU19M66lDEdbc_6I8g-FJGolN3-yu_SmVehqf_G9gZaf_o9Oj4YIHOSQOKFnl9LoKQAvGmDsrK06qgwVg5igXke3QDi5xttqtwTITm4Xa3-6R99gJot6idb0PwBOyQmvnbcp2X74s2mQwHk_4Tq1MnsFzzkiUuVqqX4eZKPVcm4jYRRkFmcOQc0phnOA-RVBAbJIze-QyJWux5lhpuHPD4gjSLZQGXhBqRGGk1t2B14iOn8X4hdArCea9AwBVpBTxmq31wjFkNxfXfzTfkJEC-d325JU3EA-7Isf0o8836vprRL2ipoEU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSkBozf9uDRQre77LZnIoEIhEQO3Ei3nSoJLIQPE_n1TpcVY-LFW9vDpHnd7by282YIeYwMcv7ESAbWAYtEoFmqGoJxo5VwWisp07zYRNLvy9FIDUrkaa-FAYA8-Axqvpm_5du52firsnosPKEPD8hhI0KzO7XW_kYFP17ca1Wu3mokSRDh2eE7qVPRj4u8QwFX9eZzsw8-mjIQtcLwrworuYNpnf5vamek-qPUo4O9DzonJcgq5LWTeSkFIk4trPNYq4x6d2UpNpDx0RXMJmy1WfiNwg-3NtvtJ22yHqDnoma68ekT0CDV07f5crJ-n1XJsPU8bLZZUTyBTRRfs8iGUjZS_L1ix6UOuImElpBqnDmHOOQprkSQSAg1UkZnXYpULXQ8jTXXFnh4QcrZPINLQrWIdGIUN2BU5AKr8IQhVAzCOidBwBWpeDzGi116jHEBxfXfww_kuD3sdcfdTv_lhpx4-HeBMLekjNjAHTkyH-vJanmfr-4X8M2jjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+2nd+International+Conference+on+Consumer+Electronics%2C+Communications+and+Networks&rft.atitle=Intrusion+detection+based+on+the+semi-supervised+Fuzzy+C-Means+clustering+algorithm&rft.au=Feng+Guorui&rft.au=Zou+Xinguo&rft.au=Wu+Jian&rft.date=2012-04-01&rft.pub=IEEE&rft.isbn=9781457714146&rft.spage=2667&rft.epage=2670&rft_id=info:doi/10.1109%2FCECNet.2012.6201493&rft.externalDocID=6201493 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457714146/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457714146/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457714146/sc.gif&client=summon&freeimage=true |

