Convergence rate of consensus algorithms with multiplicative and additive noisy measurements
Convergence rate analysis for consensus algorithms with noisy measurements has important applications in many distributive control and estimation problems. In particular, it determines whether a consensus-based time synchronization algorithm is convergent or not over networks with random bounded com...
Uloženo v:
| Vydáno v: | 2016 IEEE Conference on Control Applications (CCA) s. 755 - 760 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2016
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Convergence rate analysis for consensus algorithms with noisy measurements has important applications in many distributive control and estimation problems. In particular, it determines whether a consensus-based time synchronization algorithm is convergent or not over networks with random bounded communication delays. In this paper, sufficient conditions in terms of topology digraphs and algorithm parameters are derived for quantifying convergence rate of the consensus algorithm with both multiplicative and additive noises. |
|---|---|
| DOI: | 10.1109/CCA.2016.7587909 |