Document clustering by fuzzy c-mean algorithm

Clustering documents enable the user to have a good overall view of the information contained in the documents. Most classical clustering algorithms assign each data to exactly one cluster, thus forming a crisp partition of the given data, but fuzzy clustering allows for degrees of membership, to wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 2nd International Conference on Advanced Computer Control Ročník 1; s. 239 - 242
Hlavní autoři: Thaung Thaung Win, Lin Mon
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2010
Témata:
ISBN:1424458455, 9781424458455
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering documents enable the user to have a good overall view of the information contained in the documents. Most classical clustering algorithms assign each data to exactly one cluster, thus forming a crisp partition of the given data, but fuzzy clustering allows for degrees of membership, to which a data belongs to different clusters. In this system, documents are clustered by using fuzzy c-means (FCM) clustering algorithm. FCM clustering is one of well-know unsupervised clustering techniques. However FCM algorithm requires the user to pre-define the number of clusters and different values of clusters corresponds to different fuzzy partitions. So the validation of clustering result is needed. PBM index and F-measure are used for cluster validity.
ISBN:1424458455
9781424458455
DOI:10.1109/ICACC.2010.5487022