Document clustering by fuzzy c-mean algorithm
Clustering documents enable the user to have a good overall view of the information contained in the documents. Most classical clustering algorithms assign each data to exactly one cluster, thus forming a crisp partition of the given data, but fuzzy clustering allows for degrees of membership, to wh...
Uloženo v:
| Vydáno v: | 2010 2nd International Conference on Advanced Computer Control Ročník 1; s. 239 - 242 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2010
|
| Témata: | |
| ISBN: | 1424458455, 9781424458455 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Clustering documents enable the user to have a good overall view of the information contained in the documents. Most classical clustering algorithms assign each data to exactly one cluster, thus forming a crisp partition of the given data, but fuzzy clustering allows for degrees of membership, to which a data belongs to different clusters. In this system, documents are clustered by using fuzzy c-means (FCM) clustering algorithm. FCM clustering is one of well-know unsupervised clustering techniques. However FCM algorithm requires the user to pre-define the number of clusters and different values of clusters corresponds to different fuzzy partitions. So the validation of clustering result is needed. PBM index and F-measure are used for cluster validity. |
|---|---|
| ISBN: | 1424458455 9781424458455 |
| DOI: | 10.1109/ICACC.2010.5487022 |

