GCD computation of n integers

Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 Recent Advances in Engineering and Computational Sciences (RAECS) s. 1 - 4
Hlavní autor: Dwivedi, Shri Prakash
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2014
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.
AbstractList Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.
Author Dwivedi, Shri Prakash
Author_xml – sequence: 1
  givenname: Shri Prakash
  surname: Dwivedi
  fullname: Dwivedi, Shri Prakash
  email: shriprakashdwivedi@gbpuat-tech.ac.in
  organization: Dept. of Inf. Technol., G.B. Pant Univ. of Agric. & Technol., Pantnagar, India
BookMark eNotjs1qwkAURkewi6p9gZZCXiDx3rkxyV1K_AVBUPdyZzJTBnQiMV307Svo6jucxeEbqWFso1PqEyFDBJ4e5sv6mGnAPCtK5gL1QI0wf6DWDPCuvtf1IrHt9fbbSx_amLQ-iUmIvftx3X2i3rxc7u7jtWN1Wi1P9Sbd7dfber5LA0OfUoWNJs2mbIwjm7OY0j7ErKyEZlKIz42vQAAtNZq9WDBSsQeLZAskGquvZzY45863Llyl-zu_DtM_kxY41A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RAECS.2014.6799612
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479922900
1479922919
9781479922901
9781479922918
EndPage 4
ExternalDocumentID 6799612
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-381d2329b7dbe3c49ab7c232578a35a6af4bf80a01c3d29fac0ba89f0c13c6133
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-381d2329b7dbe3c49ab7c232578a35a6af4bf80a01c3d29fac0ba89f0c13c6133
PageCount 4
ParticipantIDs ieee_primary_6799612
PublicationCentury 2000
PublicationDate 2014-March
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-March
PublicationDecade 2010
PublicationTitle 2014 Recent Advances in Engineering and Computational Sciences (RAECS)
PublicationTitleAbbrev RAECS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.54057
Snippet Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm
Algorithm design and analysis
Computer Arithmetic
Computers
Educational institutions
Electronic mail
Equations
GCD Computation
Information technology
Number Theory
Random number generation
Title GCD computation of n integers
URI https://ieeexplore.ieee.org/document/6799612
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_Kjl4NG22yW6So9RWD1KKFumt5BN62ZW69febZNeK4MVbmARCJgzvkczMA7gVNMahljj3mcZM5AZrr_JwIQGNaeEtTS2F3p75fC5WK7nowN2-FsY5l5LP3DAO01--rcwuPpWNCh7YeZQUPuC8aGq1vutgiBy93E8nrzFZiw3bhb8UUxJgzI7_t9UJ9H8q79Bijymn0HFlDwaPkwdkkvxC8iOqPCpRavQQyFsflrPpcvKEW1kDvJGkxgEibaAxUnOrHTVMKs1NMITQUTRXhfJMe0EUyQy1Y-mVIVoJ6YnJqAngS8-gW1alOwek5JjnYU45y5gnOrBlYgOh8VQYbjN2Ab14svV707hi3R7q8m_zFRxF5zUJVtfQrbc7N4BD81lvPrY3ydtf22iA3A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfSk0oqv6h48um22yT5ylLW14roUXaS3JU_oZbfUrb_fJF0rghdvYRIImTB8H8nMfAC3CbZxyKkf6oD7JAmFzzULzYUYNMaRlti1FHrP4jxPFgs678DdrhZGKeWSz9TQDt1fvqzFxj6VjaLYsHMrKbxnlbPaaq3vShhER6_3k_TNpmuRYbv0l2aKg4zp0f82O4b-T-2dN9-hygl0VNWDwWP64AknwOA86dXaqzzX6sHQtz4U00mRzvxW2MBfUtT4BiSlITKUx5IrLAhlPBbGYIKH4ZBFTBOuE8RQILAcU80E4iyhGokACwO_-BS6VV2pM_AYHcehmWNKEqIRN3wZSUNpNE5ELANyDj17snK1bV1Rtoe6-Nt8Awez4iUrs6f8-RIOrSO36VZX0G3WGzWAffHZLD_W187zX8dqhCU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Recent+Advances+in+Engineering+and+Computational+Sciences+%28RAECS%29&rft.atitle=GCD+computation+of+n+integers&rft.au=Dwivedi%2C+Shri+Prakash&rft.date=2014-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FRAECS.2014.6799612&rft.externalDocID=6799612