GCD computation of n integers
Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.
Saved in:
| Published in: | 2014 Recent Advances in Engineering and Computational Sciences (RAECS) pp. 1 - 4 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.03.2014
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers. |
|---|---|
| AbstractList | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers. |
| Author | Dwivedi, Shri Prakash |
| Author_xml | – sequence: 1 givenname: Shri Prakash surname: Dwivedi fullname: Dwivedi, Shri Prakash email: shriprakashdwivedi@gbpuat-tech.ac.in organization: Dept. of Inf. Technol., G.B. Pant Univ. of Agric. & Technol., Pantnagar, India |
| BookMark | eNotjs1qwkAURkewi6p9gZZCXiDx3rkxyV1K_AVBUPdyZzJTBnQiMV307Svo6jucxeEbqWFso1PqEyFDBJ4e5sv6mGnAPCtK5gL1QI0wf6DWDPCuvtf1IrHt9fbbSx_amLQ-iUmIvftx3X2i3rxc7u7jtWN1Wi1P9Sbd7dfber5LA0OfUoWNJs2mbIwjm7OY0j7ErKyEZlKIz42vQAAtNZq9WDBSsQeLZAskGquvZzY45863Llyl-zu_DtM_kxY41A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/RAECS.2014.6799612 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479922900 1479922919 9781479922901 9781479922918 |
| EndPage | 4 |
| ExternalDocumentID | 6799612 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-381d2329b7dbe3c49ab7c232578a35a6af4bf80a01c3d29fac0ba89f0c13c6133 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:27 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-381d2329b7dbe3c49ab7c232578a35a6af4bf80a01c3d29fac0ba89f0c13c6133 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6799612 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-March |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-March |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 Recent Advances in Engineering and Computational Sciences (RAECS) |
| PublicationTitleAbbrev | RAECS |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.54057 |
| Snippet | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithm Algorithm design and analysis Computer Arithmetic Computers Educational institutions Electronic mail Equations GCD Computation Information technology Number Theory Random number generation |
| Title | GCD computation of n integers |
| URI | https://ieeexplore.ieee.org/document/6799612 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRVflT14NG12k-ZxlNrqQUrRHnoreUIvu1K3_f0m2bUiePEWhpAwH4SZJPPNB3DPnfbYWox4QRmipOBIxs6IVCiW51pwoVPL_Fc-n4vVSi468HDgwjjnUvGZG8Zh-su3ldnFp7IR4yE7j5LCR5yzhqv1zYPBcvT2OJ28x2ItOmwn_lJMSQFjdvq_rc6g_8O8yxaHmHIOHVf2YPA8ecpMkl9IOGaVz8osNXoIyVsflrPpcvKCWlkDtJG4RiFE2pDGSM2tdsRQqTQ3wRCOjiJjxZSn2guscG6ILaRXBmslpMcmJyYEX3IB3bIq3SVkY-aYYAFrR8I1ghlFFObOsLBGyNs0voJe9Gz90TSuWLdOXf9tvoGTCF5TYHUL3Xq7cwM4Nvt687m9S2h_AZSygNA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6MKehJZRN_TXvwaLd0yfLjKHVzYi1De9itJGkKu7QyO_9-k6xOBC_ewiMkvA_Ce0ne-z6AW2ZUiYoChWxMaEjwmIXCMSMSLmkUKc648pT5CUtTvlyKRQfudr0wxhhffGaGbuj_8otab9xT2Ygym507SeE9p5zVdmt9d8IgMXq9n8ZvrlyLDNupvzRTfMiYHf1vs2Po__TeBYtdVDmBjql6MHiMHwLtBRg8kkFdBlXgqR5s-taHbDbN4nnYChuEK4Ga0AbJwiYyQrFCGayJkIppa7CHR-KJpLIkquRIokjjYixKqZGSXJRIR1jb8ItPoVvVlTmDYEIN5dSibbC9SFAtsUTMaGrXsJmbQufQc57l71vqirx16uJv8w0czLOXJE-e0udLOHRAbsutrqDbrDdmAPv6s1l9rK898l9_voQZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Recent+Advances+in+Engineering+and+Computational+Sciences+%28RAECS%29&rft.atitle=GCD+computation+of+n+integers&rft.au=Dwivedi%2C+Shri+Prakash&rft.date=2014-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FRAECS.2014.6799612&rft.externalDocID=6799612 |