Part-based human gait identification under clothing and carrying condition variations
Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identificati...
Uložené v:
| Vydané v: | 2010 International Conference on Machine Learning and Cybernetics Ročník 1; s. 268 - 273 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2010
|
| Predmet: | |
| ISBN: | 9781424465262, 1424465265 |
| ISSN: | 2160-133X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identification under variations of clothing and carrying condition in real scenes. In this paper, an adaptive part-based feature selection method is proposed to filter out interference feature blocks and a matching procedure is performed to identify the correct subject. Compared with the state-of-the-art methods on a large standard dataset, the proposed method shows an encouraging computational complexity reduction and performance improvement in identification rates. |
|---|---|
| AbstractList | Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identification under variations of clothing and carrying condition in real scenes. In this paper, an adaptive part-based feature selection method is proposed to filter out interference feature blocks and a matching procedure is performed to identify the correct subject. Compared with the state-of-the-art methods on a large standard dataset, the proposed method shows an encouraging computational complexity reduction and performance improvement in identification rates. |
| Author | Ning Li Xiao-Kang Yang Yi Xu |
| Author_xml | – sequence: 1 surname: Ning Li fullname: Ning Li email: lining08@sjtu.edu.cn organization: Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China – sequence: 2 surname: Yi Xu fullname: Yi Xu email: xuyi@sjtu.edu.cn organization: Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China – sequence: 3 surname: Xiao-Kang Yang fullname: Xiao-Kang Yang email: xkyang@sjtu.edu.cn organization: Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China |
| BookMark | eNpVkM1KAzEUhSNWsNa-gG7yAlPzM3cmWcrgT6Giiwruym1y00bajGSmQt_eWrvxbA4ffJzFuWKD1CZi7EaKiZTC3k2bl1kzUeLAAEYKgDM2trWRpSrLChTA-T-u1IANlaxEIbX-uGTjrvsUh5SgpIUhe3_D3BdL7Mjz9W6Lia8w9jx6Sn0M0WEf28R3yVPmbtP265hWHJPnDnPe_4Jrk49H6xtzPPrdNbsIuOlofOoRmz8-zJvnYvb6NG3uZ0W0oi-UDt44DQG9BTSAQNrVtARXyVA6hXVQRpjgAYMogyGptLLaeg0UPNV6xG7_ZiMRLb5y3GLeL06_6B8UGFgC |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLC.2010.5581055 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781424465255 1424465273 1424465257 9781424465279 |
| EndPage | 273 |
| ExternalDocumentID | 5581055 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-23fd8c35fad95a85a5e3c7eb5c61f4c2a7f2808fd5af04f8e1232939d35efde73 |
| IEDL.DBID | RIE |
| ISBN | 9781424465262 1424465265 |
| ISSN | 2160-133X |
| IngestDate | Wed Aug 27 03:02:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-23fd8c35fad95a85a5e3c7eb5c61f4c2a7f2808fd5af04f8e1232939d35efde73 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5581055 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-July |
| PublicationDateYYYYMMDD | 2010-07-01 |
| PublicationDate_xml | – month: 07 year: 2010 text: 2010-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 International Conference on Machine Learning and Cybernetics |
| PublicationTitleAbbrev | ICMLC |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452195 ssj0000744891 |
| Score | 1.4955852 |
| Snippet | Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 268 |
| SubjectTerms | Carrying condition Feature selection Gait identification Humans Legged locomotion Machine learning Pixel Probes |
| Title | Part-based human gait identification under clothing and carrying condition variations |
| URI | https://ieeexplore.ieee.org/document/5581055 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21iIGpQIv4lgdGTPNRx_ZcUYFUqg4Fdasc-4wioRaFtL8f20mKkFjY4kj5kH3R5Z3fuwdwl2NmcxkbyhE1dRGiqeJRRG1uUDnQLFmwb3ub8tlMLJdy3oH7vRYGEQP5DB_8YdjLNxu99aWyIWPC-zl2oct5Vmu19vUU3xo8bjSmYcwd8AiGeUmcRdRBsWWr68p8S_i23VMzTlpBTSSHz-OX6bhmfTVP_GW9EjLPpPe_dz6GwY-Ej8z3yekEOrg-hV7r4UCaT7oPr3MXO9TnMkOCXx95V0VFCtOwiMLCEa80K4n-cMvq7kbU2hCtytJLpIgD1CbwvsjO4e66ADiAxeRxMX6ijdUCLWRU0SS1RuiUWWUkU4IphqnmmDOdxXakE8VtIiJhDVM2GlmB_kdMptKkDK1Bnp7BwXqzxnMgLtdlOkahrbsyd_BFxlbnMdOpUom19gL6fpJWn3UzjVUzP5d_n76Co3q73vNjr-GgKrd4A4d6VxVf5W2IgG9dAazq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dRO_zYOPRvuxtMnzcGzYjT1M2dtIkxsZSCe12-83SdOJ4ItvTaEfJLfcnptz7kHoPodE5zxUJAWQxESIJCINAqJzBcKAZk6dfdtblk6nbLHgsxZ62GlhAMCRz-DRHrq9fLWWG1sqe6KUWT_HPbRvnbO8WmtXUbHNwUOvMnXj1EAPZ5kXhUlADBhbNMquxDaFbxo--XHUSGoC_jQeTLJBzfvyz_xlvuJyz7Dzv7c-Rr0fER-e7dLTCWpBcYo6jYsD9h91F73OTPQQm80Udo59-F2sKrxSnkfklg5brVmJ5YdZWHM3LAqFpShLK5LCBlIrx_zCW4O86xJgD82Hz_PBiHizBbLiQUWiWCsmY6qF4lQwKijEMoWcyiTUfRmJVEcsYFpRoYO-ZmB_xXjMVUxBK0jjM9Qu1gWcI2yyXSJDYFKbK3MDYHioZR5SGQsRaa0vUNdO0vKzbqex9PNz-ffpO3Q4mk-yZTaevlyho3rz3rJlr1G7Kjdwgw7ktlp9lbcuGr4BkvOwMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Part-based+human+gait+identification+under+clothing+and+carrying+condition+variations&rft.au=Ning+Li&rft.au=Yi+Xu&rft.au=Xiao-Kang+Yang&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=1&rft.spage=268&rft.epage=273&rft_id=info:doi/10.1109%2FICMLC.2010.5581055&rft.externalDocID=5581055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |

