Part-based human gait identification under clothing and carrying condition variations

Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identificati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2010 International Conference on Machine Learning and Cybernetics Ročník 1; s. 268 - 273
Hlavní autori: Ning Li, Yi Xu, Xiao-Kang Yang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2010
Predmet:
ISBN:9781424465262, 1424465265
ISSN:2160-133X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identification under variations of clothing and carrying condition in real scenes. In this paper, an adaptive part-based feature selection method is proposed to filter out interference feature blocks and a matching procedure is performed to identify the correct subject. Compared with the state-of-the-art methods on a large standard dataset, the proposed method shows an encouraging computational complexity reduction and performance improvement in identification rates.
AbstractList Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identification under variations of clothing and carrying condition in real scenes. In this paper, an adaptive part-based feature selection method is proposed to filter out interference feature blocks and a matching procedure is performed to identify the correct subject. Compared with the state-of-the-art methods on a large standard dataset, the proposed method shows an encouraging computational complexity reduction and performance improvement in identification rates.
Author Ning Li
Xiao-Kang Yang
Yi Xu
Author_xml – sequence: 1
  surname: Ning Li
  fullname: Ning Li
  email: lining08@sjtu.edu.cn
  organization: Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China
– sequence: 2
  surname: Yi Xu
  fullname: Yi Xu
  email: xuyi@sjtu.edu.cn
  organization: Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China
– sequence: 3
  surname: Xiao-Kang Yang
  fullname: Xiao-Kang Yang
  email: xkyang@sjtu.edu.cn
  organization: Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China
BookMark eNpVkM1KAzEUhSNWsNa-gG7yAlPzM3cmWcrgT6Giiwruym1y00bajGSmQt_eWrvxbA4ffJzFuWKD1CZi7EaKiZTC3k2bl1kzUeLAAEYKgDM2trWRpSrLChTA-T-u1IANlaxEIbX-uGTjrvsUh5SgpIUhe3_D3BdL7Mjz9W6Lia8w9jx6Sn0M0WEf28R3yVPmbtP265hWHJPnDnPe_4Jrk49H6xtzPPrdNbsIuOlofOoRmz8-zJvnYvb6NG3uZ0W0oi-UDt44DQG9BTSAQNrVtARXyVA6hXVQRpjgAYMogyGptLLaeg0UPNV6xG7_ZiMRLb5y3GLeL06_6B8UGFgC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2010.5581055
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424465255
1424465273
1424465257
9781424465279
EndPage 273
ExternalDocumentID 5581055
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-23fd8c35fad95a85a5e3c7eb5c61f4c2a7f2808fd5af04f8e1232939d35efde73
IEDL.DBID RIE
ISBN 9781424465262
1424465265
ISSN 2160-133X
IngestDate Wed Aug 27 03:02:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-23fd8c35fad95a85a5e3c7eb5c61f4c2a7f2808fd5af04f8e1232939d35efde73
PageCount 6
ParticipantIDs ieee_primary_5581055
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452195
ssj0000744891
Score 1.4955852
Snippet Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait...
SourceID ieee
SourceType Publisher
StartPage 268
SubjectTerms Carrying condition
Feature selection
Gait identification
Humans
Legged locomotion
Machine learning
Pixel
Probes
Title Part-based human gait identification under clothing and carrying condition variations
URI https://ieeexplore.ieee.org/document/5581055
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21iIGpQIv4lgdGTPNRx_ZcUYFUqg4Fdasc-4wioRaFtL8f20mKkFjY4kj5kH3R5Z3fuwdwl2NmcxkbyhE1dRGiqeJRRG1uUDnQLFmwb3ub8tlMLJdy3oH7vRYGEQP5DB_8YdjLNxu99aWyIWPC-zl2oct5Vmu19vUU3xo8bjSmYcwd8AiGeUmcRdRBsWWr68p8S_i23VMzTlpBTSSHz-OX6bhmfTVP_GW9EjLPpPe_dz6GwY-Ej8z3yekEOrg-hV7r4UCaT7oPr3MXO9TnMkOCXx95V0VFCtOwiMLCEa80K4n-cMvq7kbU2hCtytJLpIgD1CbwvsjO4e66ADiAxeRxMX6ijdUCLWRU0SS1RuiUWWUkU4IphqnmmDOdxXakE8VtIiJhDVM2GlmB_kdMptKkDK1Bnp7BwXqzxnMgLtdlOkahrbsyd_BFxlbnMdOpUom19gL6fpJWn3UzjVUzP5d_n76Co3q73vNjr-GgKrd4A4d6VxVf5W2IgG9dAazq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dRO_zYOPRvuxtMnzcGzYjT1M2dtIkxsZSCe12-83SdOJ4ItvTaEfJLfcnptz7kHoPodE5zxUJAWQxESIJCINAqJzBcKAZk6dfdtblk6nbLHgsxZ62GlhAMCRz-DRHrq9fLWWG1sqe6KUWT_HPbRvnbO8WmtXUbHNwUOvMnXj1EAPZ5kXhUlADBhbNMquxDaFbxo--XHUSGoC_jQeTLJBzfvyz_xlvuJyz7Dzv7c-Rr0fER-e7dLTCWpBcYo6jYsD9h91F73OTPQQm80Udo59-F2sKrxSnkfklg5brVmJ5YdZWHM3LAqFpShLK5LCBlIrx_zCW4O86xJgD82Hz_PBiHizBbLiQUWiWCsmY6qF4lQwKijEMoWcyiTUfRmJVEcsYFpRoYO-ZmB_xXjMVUxBK0jjM9Qu1gWcI2yyXSJDYFKbK3MDYHioZR5SGQsRaa0vUNdO0vKzbqex9PNz-ffpO3Q4mk-yZTaevlyho3rz3rJlr1G7Kjdwgw7ktlp9lbcuGr4BkvOwMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Part-based+human+gait+identification+under+clothing+and+carrying+condition+variations&rft.au=Ning+Li&rft.au=Yi+Xu&rft.au=Xiao-Kang+Yang&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=1&rft.spage=268&rft.epage=273&rft_id=info:doi/10.1109%2FICMLC.2010.5581055&rft.externalDocID=5581055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon