Part-based human gait identification under clothing and carrying condition variations

Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identificati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 International Conference on Machine Learning and Cybernetics Ročník 1; s. 268 - 273
Hlavní autoři: Ning Li, Yi Xu, Xiao-Kang Yang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2010
Témata:
ISBN:9781424465262, 1424465265
ISSN:2160-133X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Gait recognition has already achieved satisfactory performance on small databases under ideal conditions. Most of the existing approaches represent gait pattern using a locomotion model or statistic model of human silhouette. However, it is still a challenging task to conduct human gait identification under variations of clothing and carrying condition in real scenes. In this paper, an adaptive part-based feature selection method is proposed to filter out interference feature blocks and a matching procedure is performed to identify the correct subject. Compared with the state-of-the-art methods on a large standard dataset, the proposed method shows an encouraging computational complexity reduction and performance improvement in identification rates.
ISBN:9781424465262
1424465265
ISSN:2160-133X
DOI:10.1109/ICMLC.2010.5581055