A topological property of hypercubes: node disjoint paths
A graph G=(V,E) ( mod V mod >or=2n) satisfies property P/sub n/ if given any 2n distinct vertices s/sub 1/,s/sub 2/, . . ., s/sub n/, g/sub 1/,g/sub 2/, . . ., g/sub n/ in V, there exist n node disjoint paths p/sub i/(s/sub i/, g/sub i/) (i=1, . . ., n) in G such that p/sub i/ is a path from s/su...
Saved in:
| Published in: | Parallel and Distributed Processing, 2nd IEEE Symposium On pp. 532 - 539 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE Comput. Soc. Press
1990
|
| Subjects: | |
| ISBN: | 0818620870, 9780818620874 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A graph G=(V,E) ( mod V mod >or=2n) satisfies property P/sub n/ if given any 2n distinct vertices s/sub 1/,s/sub 2/, . . ., s/sub n/, g/sub 1/,g/sub 2/, . . ., g/sub n/ in V, there exist n node disjoint paths p/sub i/(s/sub i/, g/sub i/) (i=1, . . ., n) in G such that p/sub i/ is a path from s/sub i/ to g/sub i/. A necessary (but not sufficient) condition for any graph to satisfy P/sub n/ is that it be (2n-1)-connected (MW). The authors prove the optimal result that the hypercube of dimension k, Q(k) (k>or=2n-1), satisfies P/sub n/(n>or=3). The proof is constructive and yields an O(n/sup 3/ log n) algorithm for finding up to (n/2) node disjoint paths in Q(n) (n>or=4) between mutually disjoint source-goal node pairs.< > |
|---|---|
| ISBN: | 0818620870 9780818620874 |
| DOI: | 10.1109/SPDP.1990.143599 |

