A topological property of hypercubes: node disjoint paths

A graph G=(V,E) ( mod V mod >or=2n) satisfies property P/sub n/ if given any 2n distinct vertices s/sub 1/,s/sub 2/, . . ., s/sub n/, g/sub 1/,g/sub 2/, . . ., g/sub n/ in V, there exist n node disjoint paths p/sub i/(s/sub i/, g/sub i/) (i=1, . . ., n) in G such that p/sub i/ is a path from s/su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel and Distributed Processing, 2nd IEEE Symposium On s. 532 - 539
Hlavní autoři: Madhavapeddy, S., Sudborough, I.H.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE Comput. Soc. Press 1990
Témata:
ISBN:0818620870, 9780818620874
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A graph G=(V,E) ( mod V mod >or=2n) satisfies property P/sub n/ if given any 2n distinct vertices s/sub 1/,s/sub 2/, . . ., s/sub n/, g/sub 1/,g/sub 2/, . . ., g/sub n/ in V, there exist n node disjoint paths p/sub i/(s/sub i/, g/sub i/) (i=1, . . ., n) in G such that p/sub i/ is a path from s/sub i/ to g/sub i/. A necessary (but not sufficient) condition for any graph to satisfy P/sub n/ is that it be (2n-1)-connected (MW). The authors prove the optimal result that the hypercube of dimension k, Q(k) (k>or=2n-1), satisfies P/sub n/(n>or=3). The proof is constructive and yields an O(n/sup 3/ log n) algorithm for finding up to (n/2) node disjoint paths in Q(n) (n>or=4) between mutually disjoint source-goal node pairs.< >
ISBN:0818620870
9780818620874
DOI:10.1109/SPDP.1990.143599