Limited resource scheduling in sparse matrix algorithms

We present analytic models and simulation techniques that describe the performance of the multifrontal method on distributed memory architectures. We focus on particular strategies for partitioning, clustering, and mapping of task nodes to processors in order to minimize the overall parallel executi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hawaii International Conference on System Sciences, 27th. Vol. 5: Biotechnology Jg. 2; S. 473 - 482
Hauptverfasser: Pozo, Smith
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE Comput. Soc. Press 1994
Schlagworte:
ISBN:0818650907, 9780818650901
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present analytic models and simulation techniques that describe the performance of the multifrontal method on distributed memory architectures. We focus on particular strategies for partitioning, clustering, and mapping of task nodes to processors in order to minimize the overall parallel execution time and minimize communication costs. The performance model has bees used to obtain estimates for the speedups of various engineering and scientific problems, on several distributed architectures. The result is that the available parallelism of these problems is strongly dependent on the sparsity structure of the input matrices.< >
ISBN:0818650907
9780818650901
DOI:10.1109/HICSS.1994.323236