A true stochastic gradient adaptive algorithm for applications using nonlinear actuators

This work considers the practical situation where adaptive systems are subject to a saturation nonlinearity at the output of the adaptive filter. Such is the case in active control of noise and vibration. A new adaptive algorithm is proposed which implements the true stochastic gradient approach to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221) Ročník 6; s. 3489 - 3492 vol.6
Hlavní autoři: Costa, M.H., Bermudez, J.C.M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2001
Témata:
ISBN:0780370414, 9780780370418
ISSN:1520-6149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work considers the practical situation where adaptive systems are subject to a saturation nonlinearity at the output of the adaptive filter. Such is the case in active control of noise and vibration. A new adaptive algorithm is proposed which implements the true stochastic gradient approach to the nonlinear problem. Deterministic nonlinear recursions are derived which model the mean weight and mean square error behaviors. The steady-state behavior is also studied. The practical aspects of nonlinearity estimation and hardware implementation are addressed. It is shown that the new algorithm outperforms the LMS algorithm even for considerable errors in estimating the nonlinearity parameters.
ISBN:0780370414
9780780370418
ISSN:1520-6149
DOI:10.1109/ICASSP.2001.940593