Conditional market segmentation by neural networks
An artificial neural network (ANN) algorithm is proposed that incorporates both cluster and discriminant (or regression) analysis of the segments. The method simultaneously estimates the models relating consumer characteristics to market segments, i.e., subjects are assigned to (unique) segments so...
Uloženo v:
| Vydáno v: | Proceedings of the Thirtieth Hawaii International Conference on System Sciences Ročník 5; s. 455 - 464 vol.5 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
1997
|
| Témata: | |
| ISBN: | 0818677430, 9780818677434 |
| ISSN: | 1060-3425 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An artificial neural network (ANN) algorithm is proposed that incorporates both cluster and discriminant (or regression) analysis of the segments. The method simultaneously estimates the models relating consumer characteristics to market segments, i.e., subjects are assigned to (unique) segments so that subjects within a class show similar purchase behavior and share the same characteristics (psychographics/sociodemographics). Parameters of all models are estimated by the backpropagation algorithm. The performance of the ANN methodology is assessed in a Monte Carlo study. In contrast to the usual stepwise approach adopted in segmentation studies, our study found that simultaneous segmentation and discrimination are preferable for finding an overall optimum in that this way clusters are formed not only to create homogeneous submarkets but also to show a good discriminatory behaviour. |
|---|---|
| ISBN: | 0818677430 9780818677434 |
| ISSN: | 1060-3425 |
| DOI: | 10.1109/HICSS.1997.663205 |

