Expectation maximization algorithm for calibration of ground sensor networks using a road constrained particle filter

Target tracking in ground sensor networks requires an accurate calibration of sensor positions and orientations, as well as sensor offsets and scale errors. We present a calibration algorithm based on the EM (expectation maximization) algorithm, where the particle filter is used for target tracking...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 15th International Conference on Information Fusion s. 771 - 778
Hlavní autoři: Syldatk, M., Sviestins, E., Gustafsson, F.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2012
Témata:
ISBN:1467304174, 9781467304177, 9780982443842, 0982443846
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Target tracking in ground sensor networks requires an accurate calibration of sensor positions and orientations, as well as sensor offsets and scale errors. We present a calibration algorithm based on the EM (expectation maximization) algorithm, where the particle filter is used for target tracking and a non-linear least squares estimator is used for estimation of the calibration parameters. The proposed algorithm is very simple to use in practice, since no ground truth of the target position and time synchronization are needed. In that way, opportunistic targets can also be used for calibration. For road-bound targets, a road-constrained particle filter is used to increase the performance. Tests on real data shows that a sensor position accuracy of a couple of meters is obtained from only one passing target.
ISBN:1467304174
9781467304177
9780982443842
0982443846