The LMS, PNLMS, and exponentiated gradient algorithms
Sparse impulse responses are encountered in many applications (network and acoustic echo cancellation, feedback cancellation in hearing aids, etc). Recently, a class of exponentiated gradient (EG) algorithms has been proposed. One of the algorithms belonging to this class, the so-called EG± algorith...
Uložené v:
| Vydané v: | 2004 12th European Signal Processing Conference : 6-10 September 2004 s. 721 - 724 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.09.2004
|
| Predmet: | |
| ISBN: | 9783200001657, 3200001658 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Sparse impulse responses are encountered in many applications (network and acoustic echo cancellation, feedback cancellation in hearing aids, etc). Recently, a class of exponentiated gradient (EG) algorithms has been proposed. One of the algorithms belonging to this class, the so-called EG± algorithm, converges and tracks much better than the classical stochastic gradient, or LMS, algorithm for sparse impulse responses. In this paper, we show how to derive the different algorithms. We analyze the EG± algorithm and explain when to expect it to behave like the LMS algorithm. It is also shown that the proportionate normalized LMS (PNLMS) algorithm proposed by Duttweiler in the context of network echo cancellation is an approximation of the EG±. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISBN: | 9783200001657 3200001658 |

