Using fuzzy logic inference algorithm to recover molecular genetic regulatory networks

Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NAFIPS - 2004 Annual Meeting of the North American Fuzzy Information Processing Society Ročník 2; s. 990 - 995 Vol.2
Hlavní autoři: Jing Yu, Wang, P.P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Piscataway NJ IEEE 2004
Témata:
ISBN:9780780383760, 0780383761
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation approach to test and improve the algorithm. Our fuzzy logic inference algorithm works reasonably well in recovering the underlying regulatory network.
ISBN:9780780383760
0780383761
DOI:10.1109/NAFIPS.2004.1337441