A Robust Vision-based Lane Detection using RANSAC Algorithm

In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT) S. 1 - 5
Hauptverfasser: Sukumar, N., Sumathi, P.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.09.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equalization, clustering of lane pixels, and RANdom SAmple Consensus (RANSAC) to develop a lane detection algorithm. The advantage of adaptive histogram equalization is to adjust the pixel intensity of Shadow and illumination regions in the road image using a contrast limit function. Further, clustering of a lane pixels is used to count and accumulate lane pixels above certain threshold. Finally, a RANSAC algorithm is applied to remove outliers and fit the lane lines model. The advantage of proposed framework is to detect the ego-lane and also all the lane boundaries in the image plane. Moreover, based on visual analysis, algorithm reveals a superior lane detection performance suitable for illumination variation, shadow, and lane variant width.
AbstractList In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equalization, clustering of lane pixels, and RANdom SAmple Consensus (RANSAC) to develop a lane detection algorithm. The advantage of adaptive histogram equalization is to adjust the pixel intensity of Shadow and illumination regions in the road image using a contrast limit function. Further, clustering of a lane pixels is used to count and accumulate lane pixels above certain threshold. Finally, a RANSAC algorithm is applied to remove outliers and fit the lane lines model. The advantage of proposed framework is to detect the ego-lane and also all the lane boundaries in the image plane. Moreover, based on visual analysis, algorithm reveals a superior lane detection performance suitable for illumination variation, shadow, and lane variant width.
Author Sukumar, N.
Sumathi, P.
Author_xml – sequence: 1
  givenname: N.
  surname: Sukumar
  fullname: Sukumar, N.
  email: nsukumar@ee.iitr.ac.in
  organization: Indian Institute of Technology, Roorkee,Department of Electrical Engineering,Roorkee,Uttarakhand,247667
– sequence: 2
  givenname: P.
  surname: Sumathi
  fullname: Sumathi, P.
  email: p.sumathi@ee.iitr.ac.in
  organization: Indian Institute of Technology, Roorkee,Department of Electrical Engineering,Roorkee,Uttarakhand,247667
BookMark eNotj09LwzAYhyPowU0_gZeA59bm7xI8lapTKCqzeB150zcz0CXSdge_vYON3-GB5_DAb0EuU05IyD2rSsYq-7AeMjQ5fXZqJQ0vecV5aa0wglcXZMG0VtIKrcw1eazpJsNhmul3nGJOBbgJe9q6hPQJZ_TzUdLDFNOObur3r7qh9bDLY5x_9jfkKrhhwtszl6R7ee6a16L9WL81dVtEaWTRy9A7A45ZWIFhHnwPwWpxHNeeK4XOIsrgnTfMMugVeAuVCTxoGawQS3J3ykZE3P6Oce_Gv-35jvgH_aNG-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GlobConPT57482.2022.9938320
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665493658
9781665493659
EndPage 5
ExternalDocumentID 9938320
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i484-d4fda8ba19b7b81cbcdbf96363626c255ea9ee4fcac8191bd5bc9b08f2f64f933
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:56 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-d4fda8ba19b7b81cbcdbf96363626c255ea9ee4fcac8191bd5bc9b08f2f64f933
PageCount 5
ParticipantIDs ieee_primary_9938320
PublicationCentury 2000
PublicationDate 2022-Sept.-23
PublicationDateYYYYMMDD 2022-09-23
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)
PublicationTitleAbbrev GLOBCONPT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8076631
Snippet In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive histogram equalization
Advanced driver assistance system
Clustering algorithms
Histograms
Image color analysis
Lane detection
Lighting
Road images
Roads
Visualization
Title A Robust Vision-based Lane Detection using RANSAC Algorithm
URI https://ieeexplore.ieee.org/document/9938320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1ziPiksonfBPTR7KNNmwSfynT4MMaYQ_Y2epObOdBWttbfb9KVieCLbyEQws3X4STn3BByF2CIkVDAegoV4-gIqzLSMoA4liAloKlS5o_EeCznczVpkPudFwYRK_EZdnyxess3uS79VVnXYalbgI6g7wkRb71aB-S2TpvZ9fKEQZ5NZpHg0nusgqBTt_j1dUqFHMOj__V5TNo_Fjw62YHLCWlg1iIPCZ3mUG4K-lpZwpnHIENHaYb0EYtKVZVRL2Vf0mkyfkkGNHlf5o7_v320yWz4NBs8s_r3A7bikjPDrUklpH0FAmRfgzZg3W6Jff4Y7YgApgqRW51qz7nARKAV9KQNbMytCsNT0szyDM8I1anSXGlpBYRcpFJF7mQxXEI_MmGso3PS8nEvPrf5LRZ1yBd_V1-SQz-0XjMRhFekWaxLvCb7-qtYbdY31aR8AzAMj9k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1DRX1S2cRvA_po9tGmbYJPZTom1jJmkb2N3uRmDrSVrfP329QyEXzxLQRCyOfhJuecS8i1gy56gQTWlSgZxzJglVoYBuD7AoQA1JVlfhTEsZhM5KhBbtZaGESsyGfYtsXqL1_namWfyjollpYbsAzQN23mrFqttU2uauPMjiUo9PNslHgBF1Zl5Tjtus2v5CkVdgz2_tfrPmn9iPDoaA0vB6SBWZPchnScw2pZ0JdKFM4sCmkapRnSOywqXlVGLZl9Rsdh_Bz2afg2yxfz4vW9RZLBfdIfsjr_AZtzwZnmRqcC0p6EAERPgdJgyvPiWwcZVYYCmEpEblSqbNQF2gMloSuMY3xupOseko0sz_CIUJVKxaUSJgCXB6mQXnm3aC6g52nXV94xadpxTz--HS6m9ZBP_q6-JDvD5CmaRg_x4ynZtdNsGRSOe0Y2isUKz8mW-izmy8VFtUBf35OTIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Global+Conference+on+Computing%2C+Power+and+Communication+Technologies+%28GlobConPT%29&rft.atitle=A+Robust+Vision-based+Lane+Detection+using+RANSAC+Algorithm&rft.au=Sukumar%2C+N.&rft.au=Sumathi%2C+P.&rft.date=2022-09-23&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FGlobConPT57482.2022.9938320&rft.externalDocID=9938320