A Robust Vision-based Lane Detection using RANSAC Algorithm

In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equal...

Full description

Saved in:
Bibliographic Details
Published in:2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT) pp. 1 - 5
Main Authors: Sukumar, N., Sumathi, P.
Format: Conference Proceeding
Language:English
Published: IEEE 23.09.2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equalization, clustering of lane pixels, and RANdom SAmple Consensus (RANSAC) to develop a lane detection algorithm. The advantage of adaptive histogram equalization is to adjust the pixel intensity of Shadow and illumination regions in the road image using a contrast limit function. Further, clustering of a lane pixels is used to count and accumulate lane pixels above certain threshold. Finally, a RANSAC algorithm is applied to remove outliers and fit the lane lines model. The advantage of proposed framework is to detect the ego-lane and also all the lane boundaries in the image plane. Moreover, based on visual analysis, algorithm reveals a superior lane detection performance suitable for illumination variation, shadow, and lane variant width.
AbstractList In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equalization, clustering of lane pixels, and RANdom SAmple Consensus (RANSAC) to develop a lane detection algorithm. The advantage of adaptive histogram equalization is to adjust the pixel intensity of Shadow and illumination regions in the road image using a contrast limit function. Further, clustering of a lane pixels is used to count and accumulate lane pixels above certain threshold. Finally, a RANSAC algorithm is applied to remove outliers and fit the lane lines model. The advantage of proposed framework is to detect the ego-lane and also all the lane boundaries in the image plane. Moreover, based on visual analysis, algorithm reveals a superior lane detection performance suitable for illumination variation, shadow, and lane variant width.
Author Sukumar, N.
Sumathi, P.
Author_xml – sequence: 1
  givenname: N.
  surname: Sukumar
  fullname: Sukumar, N.
  email: nsukumar@ee.iitr.ac.in
  organization: Indian Institute of Technology, Roorkee,Department of Electrical Engineering,Roorkee,Uttarakhand,247667
– sequence: 2
  givenname: P.
  surname: Sumathi
  fullname: Sumathi, P.
  email: p.sumathi@ee.iitr.ac.in
  organization: Indian Institute of Technology, Roorkee,Department of Electrical Engineering,Roorkee,Uttarakhand,247667
BookMark eNotj09LwzAYhyPowU0_gZeA59bm7xI8lapTKCqzeB150zcz0CXSdge_vYON3-GB5_DAb0EuU05IyD2rSsYq-7AeMjQ5fXZqJQ0vecV5aa0wglcXZMG0VtIKrcw1eazpJsNhmul3nGJOBbgJe9q6hPQJZ_TzUdLDFNOObur3r7qh9bDLY5x_9jfkKrhhwtszl6R7ee6a16L9WL81dVtEaWTRy9A7A45ZWIFhHnwPwWpxHNeeK4XOIsrgnTfMMugVeAuVCTxoGawQS3J3ykZE3P6Oce_Gv-35jvgH_aNG-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GlobConPT57482.2022.9938320
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665493658
9781665493659
EndPage 5
ExternalDocumentID 9938320
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i484-d4fda8ba19b7b81cbcdbf96363626c255ea9ee4fcac8191bd5bc9b08f2f64f933
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:56 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-d4fda8ba19b7b81cbcdbf96363626c255ea9ee4fcac8191bd5bc9b08f2f64f933
PageCount 5
ParticipantIDs ieee_primary_9938320
PublicationCentury 2000
PublicationDate 2022-Sept.-23
PublicationDateYYYYMMDD 2022-09-23
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)
PublicationTitleAbbrev GLOBCONPT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8076631
Snippet In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive histogram equalization
Advanced driver assistance system
Clustering algorithms
Histograms
Image color analysis
Lane detection
Lighting
Road images
Roads
Visualization
Title A Robust Vision-based Lane Detection using RANSAC Algorithm
URI https://ieeexplore.ieee.org/document/9938320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61iHhSacU3AT2adh9pNsHTUi0eSim1SG8lj0kt6K60W3-_SbpUBC-SSwiEMHnwzSTfN0HoLlXOC2UmIsJIRqg2MRE6ioh23jiPQTAeBaHwMBuN-Gwmxg10v9PCAEAgn0HHV8Nbvin1xl-VdR2Wug3oAvS9LGNbrdYBuq3TZnY9PaFfFuNpL6Pca6ySpFP3-PV1SkCOwdH_xjxG7R8JHh7vwOUENaBooYccT0q1WVf4NUjCiccgg4eyAPwIVWBVFdhT2Rd4ko9e8j7O3xeli__fPtpoOnia9p9J_fsBWVJOiaHWSK5kLFSmeKyVNsq608J8_hjtAgGQAoBaLbWPuZTpKS1UxG1iGbUiTU9RsygLOEM4NZoyzk2iFFApIw7UgLSuOHDSqTpHLW_3_HOb32Jem3zxd_MlOvRT6zkTSXqFmtVqA9doX39Vy_XqJizKN2RGkFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jivqksol3A_potl6yLsGnMh0TaxmzyN5GLqezoK1snb_fpCsTwRfJSwiEcHLhOyf5vhOEbnxpvNBAO4RrERCqtEu4chyijDfOXOABcyqhcNSPYzad8nED3W60MABQkc-gY6vVW74u1MpelXUNlpoNaAL0rR6lnrNWa-2g6zpxZtcSFAZFPk56fcqsysrzOnWfX5-nVNgx3P_fqAeo_SPCw-MNvByiBuQtdBfiSSFXyxK_VqJwYlFI40jkgO-hrHhVObZk9jmehPFLOMDh-7xYZOXbRxslw4dkMCL1_wcko4wSTVMtmBQul33JXCWVlqk5L4HNIKNMKACCA9BUCWWjLql7UnHpsNRLA5py3z9CzbzI4RhhXysaMKY9KYEK4TCgGkRqioEn5csT1LJ2zz7XGS5mtcmnfzdfod1R8hzNosf46Qzt2Wm2DArPP0fNcrGCC7StvspsubisFugbFW2Tow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Global+Conference+on+Computing%2C+Power+and+Communication+Technologies+%28GlobConPT%29&rft.atitle=A+Robust+Vision-based+Lane+Detection+using+RANSAC+Algorithm&rft.au=Sukumar%2C+N.&rft.au=Sumathi%2C+P.&rft.date=2022-09-23&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FGlobConPT57482.2022.9938320&rft.externalDocID=9938320