A Robust Vision-based Lane Detection using RANSAC Algorithm

In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT) s. 1 - 5
Hlavní autoři: Sukumar, N., Sumathi, P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 23.09.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equalization, clustering of lane pixels, and RANdom SAmple Consensus (RANSAC) to develop a lane detection algorithm. The advantage of adaptive histogram equalization is to adjust the pixel intensity of Shadow and illumination regions in the road image using a contrast limit function. Further, clustering of a lane pixels is used to count and accumulate lane pixels above certain threshold. Finally, a RANSAC algorithm is applied to remove outliers and fit the lane lines model. The advantage of proposed framework is to detect the ego-lane and also all the lane boundaries in the image plane. Moreover, based on visual analysis, algorithm reveals a superior lane detection performance suitable for illumination variation, shadow, and lane variant width.
AbstractList In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane detection algorithm. This paper incorporates a framework constituting of color space conversion, region of interest (ROI), adaptive histogram equalization, clustering of lane pixels, and RANdom SAmple Consensus (RANSAC) to develop a lane detection algorithm. The advantage of adaptive histogram equalization is to adjust the pixel intensity of Shadow and illumination regions in the road image using a contrast limit function. Further, clustering of a lane pixels is used to count and accumulate lane pixels above certain threshold. Finally, a RANSAC algorithm is applied to remove outliers and fit the lane lines model. The advantage of proposed framework is to detect the ego-lane and also all the lane boundaries in the image plane. Moreover, based on visual analysis, algorithm reveals a superior lane detection performance suitable for illumination variation, shadow, and lane variant width.
Author Sukumar, N.
Sumathi, P.
Author_xml – sequence: 1
  givenname: N.
  surname: Sukumar
  fullname: Sukumar, N.
  email: nsukumar@ee.iitr.ac.in
  organization: Indian Institute of Technology, Roorkee,Department of Electrical Engineering,Roorkee,Uttarakhand,247667
– sequence: 2
  givenname: P.
  surname: Sumathi
  fullname: Sumathi, P.
  email: p.sumathi@ee.iitr.ac.in
  organization: Indian Institute of Technology, Roorkee,Department of Electrical Engineering,Roorkee,Uttarakhand,247667
BookMark eNotj09LwzAYhyPowU0_gZeA59bm7xI8lapTKCqzeB150zcz0CXSdge_vYON3-GB5_DAb0EuU05IyD2rSsYq-7AeMjQ5fXZqJQ0vecV5aa0wglcXZMG0VtIKrcw1eazpJsNhmul3nGJOBbgJe9q6hPQJZ_TzUdLDFNOObur3r7qh9bDLY5x_9jfkKrhhwtszl6R7ee6a16L9WL81dVtEaWTRy9A7A45ZWIFhHnwPwWpxHNeeK4XOIsrgnTfMMugVeAuVCTxoGawQS3J3ykZE3P6Oce_Gv-35jvgH_aNG-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GlobConPT57482.2022.9938320
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665493658
9781665493659
EndPage 5
ExternalDocumentID 9938320
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i484-d4fda8ba19b7b81cbcdbf96363626c255ea9ee4fcac8191bd5bc9b08f2f64f933
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:56 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-d4fda8ba19b7b81cbcdbf96363626c255ea9ee4fcac8191bd5bc9b08f2f64f933
PageCount 5
ParticipantIDs ieee_primary_9938320
PublicationCentury 2000
PublicationDate 2022-Sept.-23
PublicationDateYYYYMMDD 2022-09-23
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)
PublicationTitleAbbrev GLOBCONPT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8075612
Snippet In a pursuit to reduce ever increasing road accidents by developing an advanced driver assistance system (ADAS), this paper proposes a vision-based lane...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive histogram equalization
Advanced driver assistance system
Clustering algorithms
Histograms
Image color analysis
Lane detection
Lighting
Road images
Roads
Visualization
Title A Robust Vision-based Lane Detection using RANSAC Algorithm
URI https://ieeexplore.ieee.org/document/9938320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA21iLhSacU3AV2atpNJJwmuhmpxIaXUIt2V3DxqQWeknfr9JnGoCG7chcAl5MXhJOfci9CNTRQHRxXJnKGEZTb87wpJlAIDyjOOROlYbIKPRmI2k-MGut16Yay1UXxmO6EZ__JNqTfhqazrsdQfQE_QdzjPvr1ae-i6TpvZDfKEQVmMp33ORPBYUdqpI36VTonIMTz435iHqP1jwcPjLbgcoYYtWugux5MSNusKv0RLOAkYZPCTKiy-t1VUVRU4SNkXeJKPnvMBzt8Wpef_r-9tNB0-TAePpK5-QJZMMGKYM0qASiRwEIkGbcD525KF_DHaEwGrpLXMaaUD5wLTBy2hJxx1GXMyTY9RsygLe4KwTIxJfEwish7zjA5iEE8hgD-l6hS1wrznH9_5Leb1lM_-7j5H-2Fpg2aCpheoWa029hLt6s9quV5dxU35Asg-j9U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL2MKeqTyiZ-G9BHu61p1qb4VKZj4ixjFtnbyOccaCtb5-83ycpE8MW3ELiEfHE4yTn3Atwon0VcY-aFWmKPhMr-79LYY4xLzgzj8JlwxSaiNKWTSTyqwe3GC6OUcuIz1bJN95cvC7GyT2Vtg6XmABqCvtUlBHfWbq0duK4SZ7atQKFX5KOsGxFqXVYYt6qYX8VTHHb09_836gE0f0x4aLSBl0OoqbwBdwkaF3y1LNGrM4V7FoUkGrJcoXtVOl1VjqyYfYbGSfqS9FDyPisW8_LtowlZ_yHrDbyq_oE3J5R4kmjJKGd-zCNOfcGF5Nrcl9BmkBGGCigWK0W0YMKyLi67XMS8QzXWIdFxEBxBPS9ydQwo9qX0TYxPww4xnI67oCjgFv4xZifQsPOefq4zXEyrKZ_-3X0Fu4PseTgdPqZPZ7Bnl9kqKHBwDvVysVIXsC2-yvlycek26Bt1GZMc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Global+Conference+on+Computing%2C+Power+and+Communication+Technologies+%28GlobConPT%29&rft.atitle=A+Robust+Vision-based+Lane+Detection+using+RANSAC+Algorithm&rft.au=Sukumar%2C+N.&rft.au=Sumathi%2C+P.&rft.date=2022-09-23&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FGlobConPT57482.2022.9938320&rft.externalDocID=9938320