A constrained multi-objective evolutionary algorithm based on weak cooperation framework and multi-chaotic operators
In this paper, we propose a multi-objective evolutionary algorithm (LCMO) based on weak co evolution framework and multi chaotic operators. In the framework of two population weak cooperation, we use hybrid chaotic operators to help candidate solution populations improve their distribution uniformit...
Uloženo v:
| Vydáno v: | 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT) s. 102 - 106 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a multi-objective evolutionary algorithm (LCMO) based on weak co evolution framework and multi chaotic operators. In the framework of two population weak cooperation, we use hybrid chaotic operators to help candidate solution populations improve their distribution uniformity, and use the second selection criteria to refine Pareto level. In this paper, The IGD and true Pareto Front performance indicators obtained from the experiments verify the good performance of the algorithm. |
|---|---|
| DOI: | 10.1109/GCRAIT55928.2022.00030 |