A constrained multi-objective evolutionary algorithm based on weak cooperation framework and multi-chaotic operators

In this paper, we propose a multi-objective evolutionary algorithm (LCMO) based on weak co evolution framework and multi chaotic operators. In the framework of two population weak cooperation, we use hybrid chaotic operators to help candidate solution populations improve their distribution uniformit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT) s. 102 - 106
Hlavní autoři: Zhang, Libiao, Yu, Ru, Liu, Jiayu, Xu, Yao, Jiang, Hui, Xu, Peng, Lin, Peng, Luo, Yu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a multi-objective evolutionary algorithm (LCMO) based on weak co evolution framework and multi chaotic operators. In the framework of two population weak cooperation, we use hybrid chaotic operators to help candidate solution populations improve their distribution uniformity, and use the second selection criteria to refine Pareto level. In this paper, The IGD and true Pareto Front performance indicators obtained from the experiments verify the good performance of the algorithm.
DOI:10.1109/GCRAIT55928.2022.00030