A Weight Vector Bi-Objective Evolutionary Algorithm with Bi-criterion Evolution for Many-Objective Optimization
In the multi-objective optimization process, its main purpose is to obtain Pareto non-dominated solutions with well convergence and diversity, but in most cases the convergence and diversity of solutions are conflicting. In order to solve this problem, this paper proposes a new convergence and diver...
Uloženo v:
| Vydáno v: | 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS) s. 273 - 279 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.07.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the multi-objective optimization process, its main purpose is to obtain Pareto non-dominated solutions with well convergence and diversity, but in most cases the convergence and diversity of solutions are conflicting. In order to solve this problem, this paper proposes a new convergence and diversity evaluation method to convert the multi-objective optimization problem into a bi-goal, more effectively evaluate the dominant relationship between individuals through the weight vectors, and then increase the selection pressure. We introduce the bi-criterion evolution can better balance the convergence and diversity of Pareto optimal solutions. Based on the proposed method, a new multi-objective optimization algorithm BiGE-BEW is proposed. Experimental results show that the proposed algorithm shows strong competitiveness in solving multi-objective optimization problems and greatly improves the performance of algorithms for solving multi-objective optimization problems. |
|---|---|
| DOI: | 10.1109/ICPICS55264.2022.9873807 |