Limits of compensation in a failed antenna array

ABSTRACT In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the radiation pattern of the array gets distorted, mostly with an increase in sidelobe level and decrease in gain. Although it is not poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of RF and microwave computer-aided engineering Jg. 24; H. 6; S. 635 - 645
Hauptverfasser: Acharya, Om Prakash, Patnaik, Amalendu, Sinha, Sachendra Nath
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Blackwell Publishing Ltd 01.11.2014
John Wiley & Sons, Inc
Schlagworte:
ISSN:1096-4290, 1099-047X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the radiation pattern of the array gets distorted, mostly with an increase in sidelobe level and decrease in gain. Although it is not possible to restore the pattern fully by rearranging the excitations of the functioning elements, compensation methods have been reported in the literature for restoring one performance parameter of the array and making a trade‐off on some other parameter. In this article, we have made a study on the tolerance level of this compensation process. One part of the study deals with the thinning in the failed array, that is, to find a limit on the minimum number of functioning elements of the array that can restore the digital beamforming of the failed array. The second part of study deals with finding the maximum number of element failures that can be compensated. The study was carried out by optimizing the amplitude excitations of the failed array. Instead of classical optimization techniques, particle swarm optimization was used for the compensation process. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:635–645, 2014.
AbstractList ABSTRACT In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the radiation pattern of the array gets distorted, mostly with an increase in sidelobe level and decrease in gain. Although it is not possible to restore the pattern fully by rearranging the excitations of the functioning elements, compensation methods have been reported in the literature for restoring one performance parameter of the array and making a trade‐off on some other parameter. In this article, we have made a study on the tolerance level of this compensation process. One part of the study deals with the thinning in the failed array, that is, to find a limit on the minimum number of functioning elements of the array that can restore the digital beamforming of the failed array. The second part of study deals with finding the maximum number of element failures that can be compensated. The study was carried out by optimizing the amplitude excitations of the failed array. Instead of classical optimization techniques, particle swarm optimization was used for the compensation process. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:635–645, 2014.
In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the radiation pattern of the array gets distorted, mostly with an increase in sidelobe level and decrease in gain. Although it is not possible to restore the pattern fully by rearranging the excitations of the functioning elements, compensation methods have been reported in the literature for restoring one performance parameter of the array and making a trade-off on some other parameter. In this article, we have made a study on the tolerance level of this compensation process. One part of the study deals with the thinning in the failed array, that is, to find a limit on the minimum number of functioning elements of the array that can restore the digital beamforming of the failed array. The second part of study deals with finding the maximum number of element failures that can be compensated. The study was carried out by optimizing the amplitude excitations of the failed array. Instead of classical optimization techniques, particle swarm optimization was used for the compensation process. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:635-645, 2014.
In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the radiation pattern of the array gets distorted, mostly with an increase in sidelobe level and decrease in gain. Although it is not possible to restore the pattern fully by rearranging the excitations of the functioning elements, compensation methods have been reported in the literature for restoring one performance parameter of the array and making a trade-off on some other parameter. In this article, we have made a study on the tolerance level of this compensation process. One part of the study deals with the thinning in the failed array, that is, to find a limit on the minimum number of functioning elements of the array that can restore the digital beamforming of the failed array. The second part of study deals with finding the maximum number of element failures that can be compensated. The study was carried out by optimizing the amplitude excitations of the failed array. Instead of classical optimization techniques, particle swarm optimization was used for the compensation process. copyright 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:635-645, 2014.
Author Patnaik, Amalendu
Acharya, Om Prakash
Sinha, Sachendra Nath
Author_xml – sequence: 1
  givenname: Om Prakash
  surname: Acharya
  fullname: Acharya, Om Prakash
  organization: Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Uttrakhand, 247667, Roorkee, India
– sequence: 2
  givenname: Amalendu
  surname: Patnaik
  fullname: Patnaik, Amalendu
  email: apatnaik@ieee.org
  organization: Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Uttrakhand, 247667, Roorkee, India
– sequence: 3
  givenname: Sachendra Nath
  surname: Sinha
  fullname: Sinha, Sachendra Nath
  organization: Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Uttrakhand, 247667, Roorkee, India
BookMark eNpdkMtOwzAQRS1UJNrChi-IxIZNythO7HgJFRSkFsq7O8tOHMklcUqcCvr3uC1iwWquNOfO4w5QzzXOIHSKYYQByEVd52ZEIAN-gPoYhIgh4YveTrM4IQKO0MD7JUDoEdpHMLW17XzUlFHe1CvjvOps4yLrIhWVylamiJTrjHMqUm2rNsfosFSVNye_dYheb65fxrfx9GFyN76cxpYyxuMiz7TIiNYFwVRrJQSnSmujKM_AFKSAHIuE4JJpgUsKORcqSbOS4KQgrBR0iM73c1dt87k2vpO19bmpKuVMs_YSM47TsAloQM_-octm3bpwXaAwZAJYlgYK76mv8NRGrlpbq3YjMchtcnKbnNwlJ2ez8fVOBU-891jfme8_j2o_JOOUp_L9fiLp_O15_vS4kFf0B6Vvcs8
CODEN IJMEFQ
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/mmce.20807
DatabaseName Istex
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-047X
EndPage 645
ExternalDocumentID 3459623331
MMCE20807
ark_67375_WNG_3PVSPRQX_B
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ATUGU
AUFTA
AZBYB
AZFZN
AZQEC
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H13
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
I-F
IX1
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
OIG
P2W
P2X
P4D
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PTHSS
PUEGO
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
AAJEY
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RHX
RWI
WRC
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i3667-dc8b982bbd213bba9973abbea3780ed2d0c19421f6b91f30c79a458f214d26f93
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343868900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1096-4290
IngestDate Wed Oct 01 14:48:08 EDT 2025
Wed Aug 13 10:47:44 EDT 2025
Wed Jan 22 17:07:14 EST 2025
Sun Sep 21 06:18:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3667-dc8b982bbd213bba9973abbea3780ed2d0c19421f6b91f30c79a458f214d26f93
Notes ark:/67375/WNG-3PVSPRQX-B
istex:BBF7F00D36417BCC5F088C764D14F7C14B537082
ArticleID:MMCE20807
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1610890685
PQPubID 1026345
PageCount 11
ParticipantIDs proquest_miscellaneous_1671566703
proquest_journals_1610890685
wiley_primary_10_1002_mmce_20807_MMCE20807
istex_primary_ark_67375_WNG_3PVSPRQX_B
PublicationCentury 2000
PublicationDate November 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November 2014
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International journal of RF and microwave computer-aided engineering
PublicationTitleAlternate Int J RF and Microwave Comp Aid Eng
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References J. Robinson and Y. Rahmat-Samii, Particle swarm optimization in electromagnetics, IEEE Trans Antennas Propag 52 (2004), 397-407.
C.A. Balanis, Antenna theory and design, Wiley, New Jersey, 2005.
L.L. Wang and D.G. Fang, Combination of genetic algorithm and fast Fourier transform for array failure correction, Proc 6th International Symposium on Antennas, Propagation and EM Theory, Beijing, November 2003.
B.K. Yeo and Y. Lu, Array failure correction with a genetic algorithm, IEEE Trans Antennas Propag 47 (1999), 823-828.
J.A. Rodriguez, F. Ares, E. Moreno, GA procedure for linear array failure correction, Electron Lett 36 (2000), 196-198.
M.V. Lozana, J.A. Rodriguez, and F. Ares, Recalculating linear array antennas to compensate for failed elements while maintaining fixed nulls, J Electromagn Appl 13 (1999), 397-412.
M. Levitas, D.A. Horton, and T.C. Cheston, Practical failure compensation in active phased arrays, IEEE Trans Antennas Propag 47 (1999), 524-535.
B.K. Yeo and Y. Lu, Adaptive array digital beam forming using complex-coded particle swarm optimization-genetic algorithm, Asia-Pacific Microwave Conference (APMC), Suzhou, Chaina, December 2005.
S.H. Zainud-Deen, M.S. Ibrahen, H.A. Sharshar, and Sabry M.M. Ibrahem, Array failure correction with orthogonal methods, Proc 21st National Radio Science Conference (NRSC), Cairo, Hgypt March 2004, pp. B7:1-9.
J.A. Rodriguez and F. Ares, Optimization of the performance of arrays with failed elements using simulated annealing technique, J Electromagn Wave Appl 12 (1998), 1625-1638.
T.J. Peters, A conjugate gradient-based algorithm to minimize the sidelobe level of planar array with element failures, IEEE Trans Antennas Propag 39 (1991), 1497-1504.
R.J. Mailloux, Array failure correction with digitally beamformed array, IEEE Trans Antennas Propag 44 (1996), 1543-1550.
S. Biswas, P.P. Sarkar, and B. Gupta, Array factor correction using artificial neural network model, Int J Electron 91 (2004), 301-308.
2004; 52
1991; 39
2000; 36
2001
2011
2000
1999; 47
1999; 13
2009
1995
2005
1993
2004
2003
2004; 91
1998; 12
1996; 44
References_xml – reference: M.V. Lozana, J.A. Rodriguez, and F. Ares, Recalculating linear array antennas to compensate for failed elements while maintaining fixed nulls, J Electromagn Appl 13 (1999), 397-412.
– reference: M. Levitas, D.A. Horton, and T.C. Cheston, Practical failure compensation in active phased arrays, IEEE Trans Antennas Propag 47 (1999), 524-535.
– reference: C.A. Balanis, Antenna theory and design, Wiley, New Jersey, 2005.
– reference: T.J. Peters, A conjugate gradient-based algorithm to minimize the sidelobe level of planar array with element failures, IEEE Trans Antennas Propag 39 (1991), 1497-1504.
– reference: J.A. Rodriguez, F. Ares, E. Moreno, GA procedure for linear array failure correction, Electron Lett 36 (2000), 196-198.
– reference: S. Biswas, P.P. Sarkar, and B. Gupta, Array factor correction using artificial neural network model, Int J Electron 91 (2004), 301-308.
– reference: B.K. Yeo and Y. Lu, Array failure correction with a genetic algorithm, IEEE Trans Antennas Propag 47 (1999), 823-828.
– reference: L.L. Wang and D.G. Fang, Combination of genetic algorithm and fast Fourier transform for array failure correction, Proc 6th International Symposium on Antennas, Propagation and EM Theory, Beijing, November 2003.
– reference: J.A. Rodriguez and F. Ares, Optimization of the performance of arrays with failed elements using simulated annealing technique, J Electromagn Wave Appl 12 (1998), 1625-1638.
– reference: B.K. Yeo and Y. Lu, Adaptive array digital beam forming using complex-coded particle swarm optimization-genetic algorithm, Asia-Pacific Microwave Conference (APMC), Suzhou, Chaina, December 2005.
– reference: J. Robinson and Y. Rahmat-Samii, Particle swarm optimization in electromagnetics, IEEE Trans Antennas Propag 52 (2004), 397-407.
– reference: R.J. Mailloux, Array failure correction with digitally beamformed array, IEEE Trans Antennas Propag 44 (1996), 1543-1550.
– reference: S.H. Zainud-Deen, M.S. Ibrahen, H.A. Sharshar, and Sabry M.M. Ibrahem, Array failure correction with orthogonal methods, Proc 21st National Radio Science Conference (NRSC), Cairo, Hgypt March 2004, pp. B7:1-9.
– start-page: 214
  year: 1993
  end-page: 217
– volume: 91
  start-page: 301
  year: 2004
  end-page: 308
  article-title: Array factor correction using artificial neural network model
  publication-title: Int J Electron
– year: 2005
– start-page: 1537
  year: 2009
  end-page: 1540
– volume: 36
  start-page: 196
  year: 2000
  end-page: 198
  article-title: GA procedure for linear array failure correction
  publication-title: Electron Lett
– year: 2003
  article-title: Combination of genetic algorithm and fast Fourier transform for array failure correction
  publication-title: Proc 6th International Symposium on Antennas, Propagation and EM Theory
– start-page: B7:1
  year: 2004
  end-page: 9
  article-title: Array failure correction with orthogonal methods
  publication-title: Proc 21st National Radio Science Conference (NRSC)
– volume: 44
  start-page: 1543
  year: 1996
  end-page: 1550
  article-title: Array failure correction with digitally beamformed array
  publication-title: IEEE Trans Antennas Propag
– volume: 39
  start-page: 1497
  year: 1991
  end-page: 1504
  article-title: A conjugate gradient‐based algorithm to minimize the sidelobe level of planar array with element failures
  publication-title: IEEE Trans Antennas Propag
– volume: 12
  start-page: 1625
  year: 1998
  end-page: 1638
  article-title: Optimization of the performance of arrays with failed elements using simulated annealing technique
  publication-title: J Electromagn Wave Appl
– start-page: 1
  year: 2011
  end-page: 4
– start-page: 84
  year: 2000
  end-page: 88
– volume: 13
  start-page: 397
  year: 1999
  end-page: 412
  article-title: Recalculating linear array antennas to compensate for failed elements while maintaining fixed nulls
  publication-title: J Electromagn Appl
– start-page: 1942
  year: 1995
  end-page: 1948
– volume: 47
  start-page: 823
  year: 1999
  end-page: 828
  article-title: Array failure correction with a genetic algorithm
  publication-title: IEEE Trans Antennas Propag
– start-page: 81
  year: 2001
  end-page: 86
– year: 2005
  article-title: Adaptive array digital beam forming using complex‐coded particle swarm optimization‐genetic algorithm
  publication-title: Asia‐Pacific Microwave Conference
– volume: 47
  start-page: 524
  year: 1999
  end-page: 535
  article-title: Practical failure compensation in active phased arrays
  publication-title: IEEE Trans Antennas Propag
– volume: 52
  start-page: 397
  year: 2004
  end-page: 407
  article-title: Particle swarm optimization in electromagnetics
  publication-title: IEEE Trans Antennas Propag
SSID ssj0009923
Score 2.0995045
Snippet ABSTRACT In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such...
In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 635
SubjectTerms Antenna arrays
Arrays
Compensation
Excitation
failed antenna arrays
Failure
Microwaves
Optimization
particle swarm optimization
sidelobe level
Sidelobes
Title Limits of compensation in a failed antenna array
URI https://api.istex.fr/ark:/67375/WNG-3PVSPRQX-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmmce.20807
https://www.proquest.com/docview/1610890685
https://www.proquest.com/docview/1671566703
Volume 24
WOSCitedRecordID wos000343868900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-047X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009923
  issn: 1096-4290
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2hhQM9tFBasRSQkSoOSBGO7fhD6oWvhQOsFijt3iw7dqQV2myVBdT--9rOsgtHxC1SnDh6nhm_SWZeAL5TnnteCJoJa2zGrKeZYpXIwu7jSu6pkjaJuF6Kfl8Oh2qwBD-ee2FafYj5C7foGSleRwc3dnq4EA0dj8socyljK_kyCYbLOrB8etO7u1yI7irSFtgrnoW4i-fypORwcXVgpRHQv68o5kuimnaa3qf3PeMafJwxTHTUmsQ6LPn6M3x4oTu4ATi1NU3RpEKxpDxksml90KhGBlUmTOVQRLyuDTJNY_59gbve2c-Ti2z264RsRHkIfa6UVklirSM5tdYoJaix1hsqJPaOOFzmipG84lblFcWlUIYVsiI5c4RXin6FTj2p_SYgzCwhriQFtTkrsZecYuYFqShzRch2urCf8NN_WnkMbZr7WC0mCv27f67p4Nft4OZ6qI-7sP0MsJ45ylQHwomlwlyG--zNTwcTj98tTO0nj3GMiFlmWOIuHCS453O1ostER6B1AlpfXZ2cpaOttwz-BquBCrG2y3AbOg_No9-BlfLpYTRtdmeG9R_Fcc8t
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hLRJwaKFQsaWAkVAPSFEd2_HjSB9LEburpQ_Ym2XHjrSqmq2ybdX-e2wn3S1HxC1SnDj6MjP-xpn5AvCZ8tzzQtBMWGMzZj3NFKtEFlYfV3JPlbRJxHUoxmM5napJV5sTe2FafYjlhlv0jBSvo4PHDem9lWro5WUZdS5l7CVfY8GOih6sHZ4Mzocr1V1F2gp7xbMQePFSn5Tsra4OtDQievcXx3zMVNNSM9j4z4d8Cesdx0RfW6N4BU98vQkvHikPvgacGpsWaF6hWFQectn0htCsRgZVJszlUMS8rg0yTWPu38D54Ojs4Djrfp6QzSgPwc-V0ipJrHUkp9YapQQ11npDhcTeEYfLXDGSV9yqvKK4FMqwQlYkZ47wStEt6NXz2r8FhJklxJWkoDZnJfaSU8y8IBVlrgj5Th92E4D6qhXI0Ka5iPViotC_x980nfw6nZz8nOr9Puw8IKw7V1noQDmxVJjLcJ9Py9PByOOXC1P7-U0cI2KeGaJTH74kvJdztbLLREegdQJaj0YHR-lo-18Gf4Rnx2ejoR5-H_94B88DMWJtz-EO9K6bG_8enpa317NF86Gzsj89qtMd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQIAQHoLSIBUpdqeJQKcKxHX8cW2Ch6rJavtq9WXZsSytEFmUBlX-P7YRdekTcIsWJo5eZ8Rtn5gWAb4TljhWcZNxok1HjSCap51lYfWzJHJHCJBHXHu_3xXAoB21tTuyFafQhphtu0TNSvI4O7u6sP5ipht7ellHnUsRe8gVaSBb8cuHoonvdm6nuStxU2EuWhcCLpvqk-GB2daClEdF__3HM10w1LTXdtXc-5DpYbTkm_NEYxQcw56oNsPJKefAjQKmxaQLHHsai8pDLpjcERxXU0Oswl4UR86rSUNe1fvoErrvHV4enWfvzhGxEWAh-thRGCmyMxTkxRkvJiTbGacIFchZbVOaS4twzI3NPUMmlpoXwOKcWMy_JJpivxpXbAhBRg7EtcUFMTkvkBCOIOo49obYI-U4H7CcA1V0jkKF0fRPrxXih_vZPFBn8uRxcnA_Vzw7YfUFYta4yUYFyIiERE-E-X6eng5HHLxe6cuOHOIbHPDNEpw74nvCeztXILmMVgVYJaHV2dnicjrbfMvgLWBocdVXvV__3DlgOvIg2LYe7YP6-fnCfwWL5eD-a1HutkT0DCcLSmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limits+of+compensation+in+a+failed+antenna+array&rft.jtitle=International+journal+of+RF+and+microwave+computer-aided+engineering&rft.au=Acharya%2C+Om+Prakash&rft.au=Patnaik%2C+Amalendu&rft.au=Sinha%2C+Sachendra+Nath&rft.date=2014-11-01&rft.issn=1096-4290&rft.eissn=1099-047X&rft.volume=24&rft.issue=6&rft.spage=635&rft.epage=645&rft_id=info:doi/10.1002%2Fmmce.20807&rft.externalDBID=10.1002%252Fmmce.20807&rft.externalDocID=MMCE20807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-4290&client=summon