Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms
Motivation: Protein β-sheets play a fundamental role in protein structure, function, evolution and bioengineering. Accurate prediction and assembly of protein β-sheets, however, remains challenging because protein β-sheets require formation of hydrogen bonds between linearly distant residues. Previo...
Uloženo v:
| Vydáno v: | Bioinformatics Ročník 21; číslo suppl-1; s. i75 - i84 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
01.06.2005
|
| Témata: | |
| ISSN: | 1367-4803, 1460-2059 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Motivation: Protein β-sheets play a fundamental role in protein structure, function, evolution and bioengineering. Accurate prediction and assembly of protein β-sheets, however, remains challenging because protein β-sheets require formation of hydrogen bonds between linearly distant residues. Previous approaches for predicting β-sheet topological features, such as β-strand alignments, in general have not exploited the global covariation and constraints characteristic of β-sheet architectures. Results: We propose a modular approach to the problem of predicting/assembling protein β-sheets in a chain by integrating both local and global constraints in three steps. The first step uses recursive neural networks to predict pairing probabilities for all pairs of interstrand β-residues from profile, secondary structure and solvent accessibility information. The second step applies dynamic programming techniques to these probabilities to derive binding pseudoenergies and optimal alignments between all pairs of β-strands. Finally, the third step uses graph matching algorithms to predict the β-sheet architecture of the protein by optimizing the global pseudoenergy while enforcing strong global β-strand pairing constraints. The approach is evaluated using cross-validation methods on a large non-homologous dataset and yields significant improvements over previous methods. Availability: http://www.igb.uci.edu/servers/psss.html Contact: pfbaldi@ics.uci.edu |
|---|---|
| Bibliografie: | To whom correspondence should be addressed. local:bti1004 istex:5A32A39353AAB44540EDD1DF4CA7485B29946B4E ark:/67375/HXZ-1HR86DBV-0 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1367-4803 1460-2059 |
| DOI: | 10.1093/bioinformatics/bti1004 |