Multi-Task Autoencoder for Noise-Robust Speech Recognition

For speech recognition in noisy environments, we propose a multi-task autoencoder which estimates not only clean speech features but also noise features from noisy speech. We introduce the deSpeeching autoencoder, which excludes speech signals from noisy speech, and combine it with the conventional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) S. 5599 - 5603
Hauptverfasser: Zhang, Haoyi, Liu, Conggui, Inoue, Nakamasa, Shinoda, Koichi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2018
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For speech recognition in noisy environments, we propose a multi-task autoencoder which estimates not only clean speech features but also noise features from noisy speech. We introduce the deSpeeching autoencoder, which excludes speech signals from noisy speech, and combine it with the conventional denoising autoencoder to form a unified multi-task au-toencoder (MTAE). We evaluate it using the Aurora 2 dataset and CHIME 3 dataset. It reduced WER by 15.7% from the conventional denoising autoencoder in the Aurora 2 test set A.
ISSN:2379-190X
DOI:10.1109/ICASSP.2018.8461446