Multivariate visual explanation for high dimensional datasets

Understanding multivariate relationships is an important task in multivariate data analysis. Unfortunately, existing multivariate visualization systems lose effectiveness when analyzing relationships among variables that span more than a few dimensions. We present a novel multivariate visual explana...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Symposium on Visual Analytics Science and Technology, 2008 : proceedings, Columbus, Ohio, USA, October 21-October 23, 2008 Ročník 2008; s. 147 - 154
Hlavní autori: Barlowe, Scott, Tianyi Zhang, Yujie Liu, Yang, Jing, Jacobs, Donald
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 19.10.2008
Predmet:
ISBN:9781424429356, 1424429358
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Understanding multivariate relationships is an important task in multivariate data analysis. Unfortunately, existing multivariate visualization systems lose effectiveness when analyzing relationships among variables that span more than a few dimensions. We present a novel multivariate visual explanation approach that helps users interactively discover multivariate relationships among a large number of dimensions by integrating automatic numerical differentiation techniques and multidimensional visualization techniques. The result is an efficient workflow for multivariate analysis model construction, interactive dimension reduction, and multivariate knowledge discovery leveraging both automatic multivariate analysis and interactive multivariate data visual exploration. Case studies and a formal user study with a real dataset illustrate the effectiveness of this approach.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:9781424429356
1424429358
DOI:10.1109/VAST.2008.4677368