Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator

To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct mat...

Full description

Saved in:
Bibliographic Details
Published in:2008 IEEE Conference on Computer Vision and Pattern Recognition Vol. 2008; pp. 1 - 7
Main Authors: Wang, Hanzi, Mirota, Daniel, Ishii, Masaru, Hager, Gregory D.
Format: Conference Proceeding Journal Article
Language:English
Published: United States IEEE 23.06.2008
Subjects:
ISBN:9781424422425, 1424422426
ISSN:1063-6919, 1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:9781424422425
1424422426
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2008.4587687