Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator
To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct mat...
Saved in:
| Published in: | 2008 IEEE Conference on Computer Vision and Pattern Recognition Vol. 2008; pp. 1 - 7 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding Journal Article |
| Language: | English |
| Published: |
United States
IEEE
23.06.2008
|
| Subjects: | |
| ISBN: | 9781424422425, 1424422426 |
| ISSN: | 1063-6919, 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISBN: | 9781424422425 1424422426 |
| ISSN: | 1063-6919 1063-6919 |
| DOI: | 10.1109/CVPR.2008.4587687 |

