ADR visualization: A generalized framework for ranking large-scale scientific data using Analysis-Driven Refinement
Prioritization of data is necessary for managing large-scale scientific data, as the scale of the data implies that there are only enough resources available to process a limited subset of the data. For example, data prioritization is used during in situ triage to scale with bandwidth bottlenecks, a...
Uloženo v:
| Vydáno v: | 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV) s. 43 - 50 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2014
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Prioritization of data is necessary for managing large-scale scientific data, as the scale of the data implies that there are only enough resources available to process a limited subset of the data. For example, data prioritization is used during in situ triage to scale with bandwidth bottlenecks, and used during focus+context visualization to save time during analysis by guiding the user to important information. In this paper, we present ADR visualization, a generalized analysis framework for ranking large-scale data using Analysis-Driven Refinement (ADR), which is inspired by Adaptive Mesh Refinement (AMR). A large-scale data set is partitioned in space, time, and variable, using user-defined importance measurements for prioritization. This process creates a prioritization tree over the data set. Using this tree, selection methods can generate sparse data products for analysis, such as focus+context visualizations or sparse data sets. |
|---|---|
| DOI: | 10.1109/LDAV.2014.7013203 |