Supercomputing enabling exhaustive statistical analysis of genome wide association study data: Preliminary results

Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and patho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Ročník 2012; s. 1258 - 1261
Hlavní autoři: Reumann, M., Makalic, E., Goudey, B. W., Inouye, M., Bickerstaffe, A., Bui, M., Park, D. J., Kapuscinski, M. K., Schmidt, D. F., Zhou, Z., Qian, G., Zobel, J., Wagner, J., Hopper, J. L.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2012
Témata:
ISBN:1424441196, 9781424441198
ISSN:1094-687X, 1557-170X, 2694-0604, 2694-0604
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and pathology data to uncover more information about genetic and environmental risk, biology and aetiology. We performed the Bayesian Posterior Probability test on a pseudo data set with 500,000 single nucleotide polymorphism and 100 samples as proof of principle. We carried out strong scaling simulations on 2 to 4,096 processing cores with factor 2 increments in partition size. On two processing cores, the run time is 317h, i.e. almost two weeks, compared to less than 10 minutes on 4,096 processing cores. The speedup factor is 2,020 that is very close to the theoretical value of 2,048. This work demonstrates the feasibility of performing exhaustive higher order analysis of GWAS studies using independence testing for contingency tables. We are now in a position to employ supercomputers with hundreds of thousands of threads for higher order analysis of GWAS data using complex statistics.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:1424441196
9781424441198
ISSN:1094-687X
1557-170X
2694-0604
2694-0604
DOI:10.1109/EMBC.2012.6346166