Supercomputing enabling exhaustive statistical analysis of genome wide association study data: Preliminary results
Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and patho...
Gespeichert in:
| Veröffentlicht in: | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Jg. 2012; S. 1258 - 1261 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2012
|
| Schlagworte: | |
| ISBN: | 1424441196, 9781424441198 |
| ISSN: | 1094-687X, 1557-170X, 2694-0604, 2694-0604 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and pathology data to uncover more information about genetic and environmental risk, biology and aetiology. We performed the Bayesian Posterior Probability test on a pseudo data set with 500,000 single nucleotide polymorphism and 100 samples as proof of principle. We carried out strong scaling simulations on 2 to 4,096 processing cores with factor 2 increments in partition size. On two processing cores, the run time is 317h, i.e. almost two weeks, compared to less than 10 minutes on 4,096 processing cores. The speedup factor is 2,020 that is very close to the theoretical value of 2,048. This work demonstrates the feasibility of performing exhaustive higher order analysis of GWAS studies using independence testing for contingency tables. We are now in a position to employ supercomputers with hundreds of thousands of threads for higher order analysis of GWAS data using complex statistics. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISBN: | 1424441196 9781424441198 |
| ISSN: | 1094-687X 1557-170X 2694-0604 2694-0604 |
| DOI: | 10.1109/EMBC.2012.6346166 |

