Bias-compensated Sparse RLS Algorithms Over Distributed Networks

In this paper, we propose a bias-compensated method based on the L1-RLS algorithm and the diffusion L1-RLS algorithm for sparse system identification. Our proposed algorithms improve the estimation accuracy of traditional L1-RLS when the input data is corrupted by input noises. Furthermore, we give...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control Conference s. 3138 - 3143
Hlavní autoři: Peng, Senran, Jia, Lijuan, Kanae, Shunshoku, Yang, Zi-jiang
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: Technical Committee on Control Theory, Chinese Association of Automation 25.07.2022
Témata:
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a bias-compensated method based on the L1-RLS algorithm and the diffusion L1-RLS algorithm for sparse system identification. Our proposed algorithms improve the estimation accuracy of traditional L1-RLS when the input data is corrupted by input noises. Furthermore, we give simulation results to verify that proposed algorithms have better estimation accuracy than other sparse RLS algorithms without bias compensation, it also proves that results are unbiased under input noises.
ISSN:1934-1768
DOI:10.23919/CCC55666.2022.9901566