Enabling Longitudinal Exploratory Analysis of Clinical COVID Data

As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 IEEE Workshop on Visual Analytics in Healthcare (VAHC) S. 19 - 24
Hauptverfasser: Borland, David, Brain, Irena, Fecho, Karamarie, Pfaff, Emily, Xu, Hao, Champion, James, Bizon, Chris, Gotz, David
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2021
Cornell University
Schlagworte:
ISSN:2331-8422, 2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Working Paper/Pre-Print-1
ObjectType-Feature-3
content type line 23
ISSN:2331-8422
2331-8422
DOI:10.1109/VAHC53616.2021.00008