FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping
In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decode...
Uloženo v:
| Vydáno v: | Proceedings / IEEE Workshop on Applications of Computer Vision s. 3443 - 3452 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2023
|
| Témata: | |
| ISSN: | 2642-9381 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decoder and adaptively learns to fuse attribute features and features conditioned on identity information without requiring any additional facial segmentation process. In IFSR, we leverage the intermediate features in an identity encoder to preserve important attributes such as head pose, facial expression, lighting, and occlusion in the target face, while still transferring the identity of the source face with high fidelity. We conduct extensive quantitative and qualitative experiments on various datasets and show that the proposed FaceDancer outperforms other state-of-the-art networks in terms of identity transfer, while having significantly better pose preservation than most of the previous methods. Code available at https://github.com/felixrosberg/FaceDance. |
|---|---|
| AbstractList | In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decoder and adaptively learns to fuse attribute features and features conditioned on identity information without requiring any additional facial segmentation process. In IFSR, we leverage the intermediate features in an identity encoder to preserve important attributes such as head pose, facial expression, lighting, and occlusion in the target face, while still transferring the identity of the source face with high fidelity. We conduct extensive quantitative and qualitative experiments on various datasets and show that the proposed FaceDancer outperforms other state-of-the-art networks in terms of identity transfer, while having significantly better pose preservation than most of the previous methods. Code available at https://github.com/felixrosberg/FaceDance. |
| Author | Aksoy, Eren Erdal Englund, Cristofer Alonso-Fernandez, Fernando Rosberg, Felix |
| Author_xml | – sequence: 1 givenname: Felix surname: Rosberg fullname: Rosberg, Felix email: felix.rosberg@berge.io organization: Berge Consulting,Gothenburg,Sweden – sequence: 2 givenname: Eren Erdal surname: Aksoy fullname: Aksoy, Eren Erdal email: eren.aksoy@hh.se organization: Halmstad University,Halmstad,Sweden – sequence: 3 givenname: Fernando surname: Alonso-Fernandez fullname: Alonso-Fernandez, Fernando email: fernando.alonso-fernandez@hh.se organization: Halmstad University,Halmstad,Sweden – sequence: 4 givenname: Cristofer surname: Englund fullname: Englund, Cristofer email: cristofer.englund@hh.se organization: Halmstad University,Halmstad,Sweden |
| BookMark | eNotj81Kw0AURkdRsK2-QRfzAqlzZ24mM-5CtK1QqODfstxJbupITENSKX17K7r6Nucc-Mbiot21LMQU1AxA-dv3vHhLrXVuppU2M6UMpmdiDNam6A1aOBcjbVEn3ji4EuNh-DwxHrwZiXxOJd9TW3J_J592AyeS2kquy7L5HuKuTfID9SyXcfsh57HiJu6P8teRzwfquthur8VlTc3AN_87Ea_zh5dimazWi8ciXyVRO7tPauuYHKAGcOh8huwQs4BYswsM5FAFA8GmlNZkIWQlKsoCUVWrUJXGTMT0rxuZedP18Yv64wZOT5RGND90rErA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WACV56688.2023.00345 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665493461 9781665493468 |
| EISSN | 2642-9381 |
| EndPage | 3452 |
| ExternalDocumentID | 10030244 |
| Genre | orig-research |
| GroupedDBID | 29G 29O 6IE 6IF 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i286t-f68ea814211848974e8447b44fe8be1a840b31b65a5fa61b7c40a7baadf0bdc33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000971500203054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:48:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i286t-f68ea814211848974e8447b44fe8be1a840b31b65a5fa61b7c40a7baadf0bdc33 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48618 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10030244 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan. |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / IEEE Workshop on Applications of Computer Vision |
| PublicationTitleAbbrev | WACV |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039193 |
| Score | 2.4472077 |
| Snippet | In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions:... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3443 |
| SubjectTerms | Adaptation models Algorithms: Biometrics and algorithms (including transfer and un-supervised learning body pose Computational modeling Computer vision face formulations Fuses gesture Image coding low-shot Machine learning architectures self semi Shape Visualization |
| Title | FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping |
| URI | https://ieeexplore.ieee.org/document/10030244 |
| WOSCitedRecordID | wos000971500203054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eDJV43vcPCK7i4UWG9N48ZTbeKrt4aBwTQxW7Nt7d8XdrfqxYM3QkJIBoZ5MN83hFyFa5I47YCZPPNMSJ8wkCFKSXlf5uB8qlzTbEKNRnoyycctWL3GwiBiXXyG13FY_-W7uV3FVFnQ8HAlgz3qkI5SsgFrbZ5dngdXpMXGpUl-8zoYvgRXRcfyrSyymPKIWPrVQaU2IMXuP7feI70fKB4dfxuZfbKF5QHZbX1H2mrm4pAMCmOxPsLqlo7nC2TUlI4-WPu-igkxNlibCmks66BFpLYK3jeNa-jj2kSOhrceeS7unob3rG2PwGaZlkvmpUajUxFCOC10iAtQC6FACI8aMDUhdAOeguybvjcyBWVFYhQY43wCznJ-RLrlvMRjQoUTFjUXHnQmuFMQefO8VwAW-ujzE9KLIpl-NAwY0400Tv-YPyM7UepNquKcdJfVCi_Itv1czhbVZX1uX_aUmHk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT3VR8W3OXiN7m6y2ay3Ulwq1lqwam8lj4kUZCvb1v59k92tevHgLQRCIJPJPDLfNwhdumsSGGEUkWlkCeM2IIq7KCWkMU-VsWFiqmYTSb8vRqN0UIPVSywMAJTFZ3Dlh-VfvpnqhU-VOQ13V9LZo3W0ETMWBRVca_Xw0tQ5IzU6LgzS69d258U5K8IXcEWex5R6zNKvHiqlCcma_9x8B7V-wHh48G1mdtEa5HuoWXuPuNbN2T5qZ1JDKcTiBg-mMyBY5gY_av2-8Ckx0l7KArAv7MCZJ7dy_jf2a_DTUnqWhrcWes5uh50uqRskkEkk-JxYLkCKkLkgTjDhIgMQjCWKMQtCQShd8KZoqHgsYyt5qBLNApkoKY0NlNGUHqBGPs3hEGFmmAZBmVUiYtQkyjPnWZsopVUMNj1CLX8k44-KA2O8Oo3jP-Yv0FZ3-NAb9-769ydo20ugSlycosa8WMAZ2tSf88msOC9l-AUW4ZvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=FaceDancer%3A+Pose-+and+Occlusion-Aware+High+Fidelity+Face+Swapping&rft.au=Rosberg%2C+Felix&rft.au=Aksoy%2C+Eren+Erdal&rft.au=Alonso-Fernandez%2C+Fernando&rft.au=Englund%2C+Cristofer&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=3443&rft.epage=3452&rft_id=info:doi/10.1109%2FWACV56688.2023.00345&rft.externalDocID=10030244 |