Optimal convergence rates of totally asynchronous optimization

Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE Conference on Decision & Control s. 6484 - 6490
Hlavní autori: Wu, Xuyang, Magnusson, Sindri, Reza Feyzmahdavian, Hamid, Johansson, Mikael
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.12.2022
Predmet:
ISSN:2576-2370
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive explicit convergence rates for the proximal incremental aggregated gradient (PIAG) and the asynchronous block-coordinate descent (Async-BCD) methods under a specific model of total asynchrony, and show that the derived rates are order-optimal. The convergence bounds provide an insightful understanding of how the growth rate of the delays deteriorates the convergence times of the algorithms. Our theoretical findings are demonstrated by a numerical example.
ISSN:2576-2370
DOI:10.1109/CDC51059.2022.9993168