Optimal convergence rates of totally asynchronous optimization
Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive e...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Conference on Decision & Control s. 6484 - 6490 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.12.2022
|
| Témata: | |
| ISSN: | 2576-2370 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive explicit convergence rates for the proximal incremental aggregated gradient (PIAG) and the asynchronous block-coordinate descent (Async-BCD) methods under a specific model of total asynchrony, and show that the derived rates are order-optimal. The convergence bounds provide an insightful understanding of how the growth rate of the delays deteriorates the convergence times of the algorithms. Our theoretical findings are demonstrated by a numerical example. |
|---|---|
| ISSN: | 2576-2370 |
| DOI: | 10.1109/CDC51059.2022.9993168 |