Saliency Optimization from Robust Background Detection

Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 IEEE Conference on Computer Vision and Pattern Recognition s. 2814 - 2821
Hlavní autoři: Zhu, Wangjiang, Liang, Shuang, Wei, Yichen, Sun, Jian
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2014
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recent progresses in salient object detection have exploited the boundary prior, or background information, to assist other saliency cues such as contrast, achieving state-of-the-art results. However, their usage of boundary prior is very simple, fragile, and the integration with other cues is mostly heuristic. In this work, we present new methods to address these issues. First, we propose a robust background measure, called boundary connectivity. It characterizes the spatial layout of image regions with respect to image boundaries and is much more robust. It has an intuitive geometrical interpretation and presents unique benefits that are absent in previous saliency measures. Second, we propose a principled optimization framework to integrate multiple low level cues, including our background measure, to obtain clean and uniform saliency maps. Our formulation is intuitive, efficient and achieves state-of-the-art results on several benchmark datasets.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2014.360