Convolutional Sparse Coding for Image Super-Resolution

Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately. These methods, however, ignore the consistency of pixels in overlapped patches, which is a strong constraint for image reconstruction. In this p...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / IEEE International Conference on Computer Vision pp. 1823 - 1831
Main Authors: Gu, Shuhang, Zuo, Wangmeng, Xie, Qi, Meng, Deyu, Feng, Xiangchu, Zhang, Lei
Format: Conference Proceeding Journal Article
Language:English
Published: IEEE 01.12.2015
Subjects:
ISSN:2380-7504
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately. These methods, however, ignore the consistency of pixels in overlapped patches, which is a strong constraint for image reconstruction. In this paper, we propose a convolutional sparse coding (CSC) based SR (CSC-SR) method to address the consistency issue. Our CSC-SR involves three groups of parameters to be learned: (i) a set of filters to decompose the low resolution (LR) image into LR sparse feature maps, (ii) a mapping function to predict the high resolution (HR) feature maps from the LR ones, and (iii) a set of filters to reconstruct the HR images from the predicted HR feature maps via simple convolution operations. By working directly on the whole image, the proposed CSC-SR algorithm does not need to divide the image into overlapped patches, and can exploit the image global correlation to produce more robust reconstruction of image local structures. Experimental results clearly validate the advantages of CSC over patch based SC in SR application. Compared with state-of-the-art SR methods, the proposed CSC-SR method achieves highly competitive PSNR results, while demonstrating better edge and texture preservation performance.
AbstractList Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately. These methods, however, ignore the consistency of pixels in overlapped patches, which is a strong constraint for image reconstruction. In this paper, we propose a convolutional sparse coding (CSC) based SR (CSC-SR) method to address the consistency issue. Our CSC-SR involves three groups of parameters to be learned: (i) a set of filters to decompose the low resolution (LR) image into LR sparse feature maps, (ii) a mapping function to predict the high resolution (HR) feature maps from the LR ones, and (iii) a set of filters to reconstruct the HR images from the predicted HR feature maps via simple convolution operations. By working directly on the whole image, the proposed CSC-SR algorithm does not need to divide the image into overlapped patches, and can exploit the image global correlation to produce more robust reconstruction of image local structures. Experimental results clearly validate the advantages of CSC over patch based SC in SR application. Compared with state-of-the-art SR methods, the proposed CSC-SR method achieves highly competitive PSNR results, while demonstrating better edge and texture preservation performance.
Author Deyu Meng
Lei Zhang
Wangmeng Zuo
Qi Xie
Xiangchu Feng
Shuhang Gu
Author_xml – sequence: 1
  givenname: Shuhang
  surname: Gu
  fullname: Gu, Shuhang
– sequence: 2
  givenname: Wangmeng
  surname: Zuo
  fullname: Zuo, Wangmeng
– sequence: 3
  givenname: Qi
  surname: Xie
  fullname: Xie, Qi
– sequence: 4
  givenname: Deyu
  surname: Meng
  fullname: Meng, Deyu
– sequence: 5
  givenname: Xiangchu
  surname: Feng
  fullname: Feng, Xiangchu
– sequence: 6
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
BookMark eNotzD1PwzAUhWGDQKItjEwsGVlS7rUd52ZEER-VKiFRYI2c-LoKSuMQN0j8eyq10xneR2cuLvrQsxC3CEtEKB5WZfm1lIDZUqI8E3PUJlekCoRzMZOKIM0z0FdiHuM3gCokmZkwZeh_Qzft29DbLtkMdoyclMG1_TbxYUxWO7vlZDMNPKbvHE_0Wlx620W-Oe1CfD4_fZSv6frtZVU-rtNW5nqfNpKglrbwjjMpvSebOdKFk-Qb75TJoT50SeRqwoYpc9pjXiM7XYNuarUQ98ffYQw_E8d9tWtjw11new5TrJDQgCFS6kDvjrRl5moY250d_6pcI2SmUP9P-lS5
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2015.212
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1467383910
9781467383912
EISSN 2380-7504
EndPage 1831
ExternalDocumentID 7410569
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-c280b2a9fde522ff8a5d849d28fcfd3670b0b2288db81ce85d4f17b1ed4b04cb3
IEDL.DBID RIE
ISICitedReferencesCount 255
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380414100204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Jul 11 14:58:53 EDT 2025
Wed Aug 27 01:57:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-c280b2a9fde522ff8a5d849d28fcfd3670b0b2288db81ce85d4f17b1ed4b04cb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1816068833
PQPubID 23500
PageCount 9
ParticipantIDs ieee_primary_7410569
proquest_miscellaneous_1816068833
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssib030089929
Score 2.4931047
Snippet Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately....
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1823
SubjectTerms Algorithms
Coding
Computer vision
Consistency
Convolution
Convolutional codes
Dictionaries
Encoding
Feature maps
Image coding
Image reconstruction
Image resolution
Surface layer
Texture
Title Convolutional Sparse Coding for Image Super-Resolution
URI https://ieeexplore.ieee.org/document/7410569
https://www.proquest.com/docview/1816068833
WOSCitedRecordID wos000380414100204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFH-o7LCT23TMfZHBjqs2TW3Sc5nMiwhuw1tJmgSErRW1_v3La6setstuhSRQXl7e-yXv4wfwbKniwvjGYzryvTCjGoncmcds6DRERZoqVZFN8NlMLJfxvAUvx1oYY0yVfGaG-FnF8nWRlfhUNuKYkxjFbWhzHtW1WgfdYT7Gr9DV11bYuX0RnXpqjqZJ8omJXONhgOSTFZPKL_Nb-ZRJ939_cwH9U3EemR_dziW0TH4F3QZNkuasbnsQufn7RrHkF1ms3RXWkKTAVcRBVTL9draELMq12Xj4il9P7cPH5PU9efMalgRv5W6UOy8LhK8CGVttHJayVsixFmGsA2Ezq7E_m3LjgRBaCYokpTq0lCtqdKj8MFPsGjp5kZsbIFTGRmkqpXWDVMtYU5ONNecOVUnLggH0UAzpum6EkTYSGMDTQY6pU06MOMjcFOU2dfAhQlYbxm7_XnoH57gpdX7IPXR2m9I8wFm23622m8dqh38ARPin_g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKejT1E2c1wo-2q1pekmfi2PDOQabsreSNCcw0Hbs9vtN2m570BffCklKOTk950vO5QN4VkSEDB20qQwc20uJNETu1KbK0xoiAkmEKMgmwtGIzWbRuAYv-1oYRCySz7BjHotYvszTjbkq64YmJzGIjuDY129yymqtnfZQx0SwjLMv7bB2_Cw4dNXsDuL406Ry-R3X0E8WXCq_DHDhVXqN_33PObQO5XnWeO94LqCG2SU0KjxpVX_rqgmBnr-tVIt_WZOFPsSiFedmlaXBqjX41tbEmmwWuLTNPX45tQUfvddp3LcrngR7rs-Uazt1mSNcHimJGk0pxbgvmRdJl6lUSdOhTehxlzEpGDE0pdJTJBQEpSccLxX0CupZnuE1WIRHKCThXOlBInkkCaa-DEONq7iibhuaRgzJomyFkVQSaMPTTo6JVk8Tc-AZ5ptVogFEYHhtKL35e-kjnPan78NkOBi93cKZ2aAyW-QO6uvlBu_hJN2u56vlQ7HbPy6_q0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Convolutional+Sparse+Coding+for+Image+Super-Resolution&rft.au=Shuhang+Gu&rft.au=Wangmeng+Zuo&rft.au=Qi+Xie&rft.au=Deyu+Meng&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=1823&rft.epage=1831&rft_id=info:doi/10.1109%2FICCV.2015.212&rft.externalDocID=7410569