Exploring multi-channel features for denoising-autoencoder-based speech enhancement
This paper investigates a multi-channel denoising autoencoder (DAE)-based speech enhancement approach. In recent years, deep neural network (DNN)-based monaural speech enhancement and robust automatic speech recognition (ASR) approaches have attracted much attention due to their high performance. Al...
Uloženo v:
| Vydáno v: | 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 116 - 120 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2015
|
| Témata: | |
| ISSN: | 1520-6149 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper investigates a multi-channel denoising autoencoder (DAE)-based speech enhancement approach. In recent years, deep neural network (DNN)-based monaural speech enhancement and robust automatic speech recognition (ASR) approaches have attracted much attention due to their high performance. Although multi-channel speech enhancement usually outperforms single channel approaches, there has been little research on the use of multi-channel processing in the context of DAE. In this paper, we explore the use of several multi-channel features as DAE input to confirm whether multi-channel information can improve performance. Experimental results show that certain multi-channel features outperform both a monaural DAE and a conventional time-frequency-mask-based speech enhancement method. |
|---|---|
| ISSN: | 1520-6149 |
| DOI: | 10.1109/ICASSP.2015.7177943 |