CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 15305 - 15314
Hauptverfasser: Lin, Yuqi, Chen, Minghao, Wang, Wenxiao, Wu, Boxi, Li, Ke, Lin, Binbin, Liu, Haifeng, He, Xiaofei
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2023
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Mean-while, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP- ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) focus on confident regions. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
AbstractList Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Mean-while, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP- ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) focus on confident regions. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
Author Lin, Yuqi
Wang, Wenxiao
Wu, Boxi
Li, Ke
Lin, Binbin
He, Xiaofei
Chen, Minghao
Liu, Haifeng
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Lin
  fullname: Lin, Yuqi
  email: linyq5566@gmail.com
  organization: College of Computer Science, Zhejiang University,State Key Lab of CAD&CG
– sequence: 2
  givenname: Minghao
  surname: Chen
  fullname: Chen, Minghao
  email: minghaochen01@gmail.com
  organization: College of Computer Science, Zhejiang University,State Key Lab of CAD&CG
– sequence: 3
  givenname: Wenxiao
  surname: Wang
  fullname: Wang, Wenxiao
  organization: School of Software Technology, Zhejiang University
– sequence: 4
  givenname: Boxi
  surname: Wu
  fullname: Wu, Boxi
  organization: School of Software Technology, Zhejiang University
– sequence: 5
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  organization: Fullong Technology
– sequence: 6
  givenname: Binbin
  surname: Lin
  fullname: Lin, Binbin
  organization: School of Software Technology, Zhejiang University
– sequence: 7
  givenname: Haifeng
  surname: Liu
  fullname: Liu, Haifeng
  organization: College of Computer Science, Zhejiang University,State Key Lab of CAD&CG
– sequence: 8
  givenname: Xiaofei
  surname: He
  fullname: He, Xiaofei
  organization: College of Computer Science, Zhejiang University,State Key Lab of CAD&CG
BookMark eNo1zM1OwkAUQOHRaCIib8BiXqB456edjrumgpKQSAR1SW7bOzgK06atRN5eEnX1rc65ZhehDsTYWMBECLC3-evyOZZG2okEqSYgdGLP2Mgam6oYFAhp03M2EJCoKLHCXrFR130AgJJCJDYdsG2-mC-573i262qOgU-d86Wn0PMVbfcnqb3jGV_Tdx_dt_5AgWdN09ZYvnNXt_yN8HN35KuvhtqD76g6dXsMvS__B9j7OtywS4e7jkZ_DtnLbLrOH6PF08M8zxaRlwb6SGPhtHau1MoiVrFAh1oCGo0mKWIDxiWOrAJrhSqBsFAxlkWZyEK7ylZqyMa_X09Em6b1e2yPGwESVBpr9QNph1r-
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.01469
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 15314
ExternalDocumentID 10203854
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i270t-4abf44ffc439aad51afa420a74a76b5707f6fe9309913c0eab35acbc62b4fd9d3
IEDL.DBID RIE
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062522107060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:56:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i270t-4abf44ffc439aad51afa420a74a76b5707f6fe9309913c0eab35acbc62b4fd9d3
PageCount 10
ParticipantIDs ieee_primary_10203854
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6303906
Snippet Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task. Mainstream approaches follow a multi-stage framework and suffer...
SourceID ieee
SourceType Publisher
StartPage 15305
SubjectTerms Codes
Computer vision
Costs
grouping and shape analysis
Pattern recognition
Real-time systems
Segmentation
Semantic segmentation
Training
Title CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation
URI https://ieeexplore.ieee.org/document/10203854
WOSCitedRecordID wos001062522107060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EePCED4zv9OB1cR_d7dYbQYgHQ4ggciN9TMlGWMgumPjvbcuC8eDB26abTJOZtPPq9w1C94SAFDIJPC6F8oyHBi9lnHpCiJj5ILhy3fPxC-3308mEDSqwusPCAIB7fAYt--l6-WopN7ZUZk54aBtZpIZqlCZbsNa-oBKZVCZhaQWPC3z20BkPXuPQRI8tOyO8ZWlS2K8hKs6H9Br_3P0YNX_QeHiw9zMn6ADyU9SowkdcHc7yDM06JkvHWYnb83KJeY67jh7CCMVDmDnyzeIRt_HIJrtPhb3mcLuiFMcmdsXvwD_mX3i4WdkLpLTCYWE0n8mdAGfGJnrrdUedZ6-ao-BlIfXXHuFCE6K1NMEH5yoOuOYk9DklnCYipj7ViQYWmWAxiKQPXEQxtxYMBdGKqegc1fNlDhcIx1qloFRg_mpCwfYUWRhKEkg7vEyTS9S0ipuutlQZ053Orv5Yv0ZH1jbbmsYNqq-LDdyiQ_m5zsrizhn4G6I8qOw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSED4xve_C6uI8uu_VGEIIRCRFEbqSPKdmIC9kFE_-9bVkwHjx423STaTKTdl6d70PolhAQXNQ8hwkuHe2hwYkpixzOeUhd4Eza7vmwE3W78WhEe8Wwup2FAQD7-Ayq5tP28uVMLE2pTJ9w3zSyyDbaMdRZxbjWpqQS6GSmRuNiQM5z6V1j2HsJfR0_Vg1LeNUApdBfNCrWi7TK_9z_AFV-5vFwb-NpDtEWpEeoXASQuDie-TGaNHSejpMc16f5DLMUNy1AhBaK-zCx8JvZPa7jgUl3HzJz0eF6ASqOdfSK34C9T79wfzk3V0huhMOH1n0i1gKsISvotdUcNNpOwaTgJH7kLhzCuCJEKaHDD8Zk6DHFiO-yiLCoxsPIjVRNAQ10uOgFwgXGg5AZG_qcKEllcIJK6SyFU4RDJWOQ0tN_FYnAdBWp7wviCUNfpsgZqhjFjecrsIzxWmfnf6zfoL324Lkz7jx2ny7QvrHTqsJxiUqLbAlXaFd8LpI8u7bG_gadHaw1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=CLIP+is+Also+an+Efficient+Segmenter%3A+A+Text-Driven+Approach+for+Weakly+Supervised+Semantic+Segmentation&rft.au=Lin%2C+Yuqi&rft.au=Chen%2C+Minghao&rft.au=Wang%2C+Wenxiao&rft.au=Wu%2C+Boxi&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=15305&rft.epage=15314&rft_id=info:doi/10.1109%2FCVPR52729.2023.01469&rft.externalDocID=10203854