JPEG Artifacts Reduction via Deep Convolutional Sparse Coding
To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the fea...
Uložené v:
| Vydané v: | Proceedings / IEEE International Conference on Computer Vision s. 2501 - 2510 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2019
|
| Predmet: | |
| ISSN: | 2380-7504 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the feature maps instead of the raw image. The final de-blocked image is directly reconstructed from the coded features. We use dilated convolution to extract multi-scale image features, which allows our single model to simultaneously handle multiple JPEG compression levels. Since our method integrates model-based convolutional sparse coding with a learning-based deep neural network, the entire network structure is compact and more explainable. The resulting lightweight model generates comparable or better de-blocking results when compared with state-of-the-art methods. |
|---|---|
| ISSN: | 2380-7504 |
| DOI: | 10.1109/ICCV.2019.00259 |