Edit Distance in Near-Linear Time: it's a Constant Factor
We present an algorithm for approximating the edit distance between two strings of length n in time n^{1+\epsilon} , for any \epsilon > 0 , up to a constant factor. Our result completes a research direction set forth in the recent breakthrough paper [1], which showed the first constant-factor app...
Uloženo v:
| Vydáno v: | Proceedings / annual Symposium on Foundations of Computer Science s. 990 - 1001 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2020
|
| Témata: | |
| ISSN: | 2575-8454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an algorithm for approximating the edit distance between two strings of length n in time n^{1+\epsilon} , for any \epsilon > 0 , up to a constant factor. Our result completes a research direction set forth in the recent breakthrough paper [1], which showed the first constant-factor approximation algorithm with a (strongly) sub-quadratic running time. The recent results [2], [3] have shown near-linear complexity only under the restriction that the edit distance is close to maximal (equivalently, there is a near-linear additive approximation). In contrast, our algorithm obtains a constant-factor approximation in near-linear running time for any input strings. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS46700.2020.00096 |