Edit Distance in Near-Linear Time: it's a Constant Factor
We present an algorithm for approximating the edit distance between two strings of length n in time n^{1+\epsilon} , for any \epsilon > 0 , up to a constant factor. Our result completes a research direction set forth in the recent breakthrough paper [1], which showed the first constant-factor app...
Gespeichert in:
| Veröffentlicht in: | Proceedings / annual Symposium on Foundations of Computer Science S. 990 - 1001 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2020
|
| Schlagworte: | |
| ISSN: | 2575-8454 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present an algorithm for approximating the edit distance between two strings of length n in time n^{1+\epsilon} , for any \epsilon > 0 , up to a constant factor. Our result completes a research direction set forth in the recent breakthrough paper [1], which showed the first constant-factor approximation algorithm with a (strongly) sub-quadratic running time. The recent results [2], [3] have shown near-linear complexity only under the restriction that the edit distance is close to maximal (equivalently, there is a near-linear additive approximation). In contrast, our algorithm obtains a constant-factor approximation in near-linear running time for any input strings. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS46700.2020.00096 |