BASNet: Boundary-Aware Salient Object Detection

Deep Convolutional Neural Networks have been adopted for salient object detection and achieved the state-of-the-art performance. Most of the previous works however focus on region accuracy but not on the boundary quality. In this paper, we propose a predict-refine architecture, BASNet, and a new hyb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 7471 - 7481
Hlavní autori: Qin, Xuebin, Zhang, Zichen, Huang, Chenyang, Gao, Chao, Dehghan, Masood, Jagersand, Martin
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2019
Predmet:
ISSN:1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Deep Convolutional Neural Networks have been adopted for salient object detection and achieved the state-of-the-art performance. Most of the previous works however focus on region accuracy but not on the boundary quality. In this paper, we propose a predict-refine architecture, BASNet, and a new hybrid loss for Boundary-Aware Salient object detection. Specifically, the architecture is composed of a densely supervised Encoder-Decoder network and a residual refinement module, which are respectively in charge of saliency prediction and saliency map refinement. The hybrid loss guides the network to learn the transformation between the input image and the ground truth in a three-level hierarchy -- pixel-, patch- and map- level -- by fusing Binary Cross Entropy (BCE), Structural SIMilarity (SSIM) and Intersection-over-Union (IoU) losses. Equipped with the hybrid loss, the proposed predict-refine architecture is able to effectively segment the salient object regions and accurately predict the fine structures with clear boundaries. Experimental results on six public datasets show that our method outperforms the state-of-the-art methods both in terms of regional and boundary evaluation measures. Our method runs at over 25 fps on a single GPU. The code is available at: https://github.com/NathanUA/BASNet.
ISSN:1063-6919
DOI:10.1109/CVPR.2019.00766